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Bridgehead effect and multiple introductions shape
the global invasion history of a termite
Alexander J. Blumenfeld 1,9✉, Pierre-André Eyer 1,9, Claudia Husseneder2, Jianchu Mo3,

Laura N. L. Johnson1,4, Changlu Wang5, J. Kenneth Grace6, Thomas Chouvenc7, Shichen Wang8 &

Edward L. Vargo1

Native to eastern Asia, the Formosan subterranean termite Coptotermes formosanus (Shiraki)

is recognized as one of the 100 worst invasive pests in the world, with established popula-

tions in Japan, Hawaii and the southeastern United States. Despite its importance, the native

source(s) of C. formosanus introductions and their invasive pathway out of Asia remain

elusive. Using ~22,000 SNPs, we retraced the invasion history of this species through

approximate Bayesian computation and assessed the consequences of the invasion on its

genetic patterns and demography. We show a complex invasion history, where an initial

introduction to Hawaii resulted from two distinct introduction events from eastern Asia and

the Hong Kong region. The admixed Hawaiian population subsequently served as the source,

through a bridgehead, for one introduction to the southeastern US. A separate introduction

event from southcentral China subsequently occurred in Florida showing admixture with the

first introduction. Overall, these findings further reinforce the pivotal role of bridgeheads in

shaping species distributions in the Anthropocene and illustrate that the global distribution of

C. formosanus has been shaped by multiple introductions out of China, which may have

prevented and possibly reversed the loss of genetic diversity within its invasive range.
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B iological invasions are a defining feature of the
Anthropocene1,2, a byproduct of globalization where
human transport and trade have facilitated the transfer of

organisms throughout the world3–5. Remarkably, the accumula-
tion of introduced species worldwide has yet to reach saturation6,
and the harmful effects these invasive species have on the com-
munities and ecosystems they invade cannot be overstated7,8. The
success of invasive species in their new environments has often
been considered paradoxical, as they are able to persist and
outcompete native, locally adapted species despite experiencing
bottlenecks that reduce their genetic diversity, and thereby pos-
sibly their fitness9,10. However, there is growing evidence that
genuinely paradoxical invasions are not so common11, as the loss
of genetic diversity in invasive populations is less frequent and
less intense than previously expected12–14. In addition, low
genetic diversity in introduced populations measured at neutral
markers (e.g., microsatellites) does not necessarily correlate with
low variation in ecologically relevant traits11. Indeed, quantitative
variation is usually lost at a reduced rate during invasions com-
pared to diversity at molecular markers15, and pre-adaptive traits
that confer success in the invaded range may render reduced
genetic diversity inconsequential16,17. Furthermore, the degree of
genetic loss may differ under distinct invasion histories. The
amount of genetic diversity brought to the introduced population
increases with the size of the propagule and additional re-
introductions during multiple introduction events from the same
or genetically distinct source populations17. In rare cases, genetic
diversity might be higher within an introduced population than
its native, source populations18. Sometimes, introductions origi-
nate from an already invasive population rather than a native
population—a phenomenon known as the ‘bridgehead effect’19–21.
This may lead to an extreme loss of diversity, as subsequent
introductions arise from an already depauperate introduced
population22. Investigating patterns of genetic diversity within the
native and introduced populations of a species may provide
insights into past demographic events and allow for recon-
structing its invasion history23,24.

The Formosan subterranean termite Coptotermes formosanus
(Shiraki) is currently recognized by the IUCN as one of the 100
worst invasive species in the world25, establishing invasive popu-
lations in Japan, Hawaii, and the southeastern United States26.
Like all invasive termites, this species nests in and feeds on wood,
thereby increasing its chance of being transported through mer-
chandise trade27. Coptotermes formosanus is thought to be native
to eastern Asia, though its exact origin remains unclear. It has long
been suspected to originate from the vicinity of Formosa (i.e.,
Taiwan), where the type specimen was described28. A southern
China origin was also suggested due to the presence of termito-
philous beetles associated with C. formosanus colonies29; however,
these beetles were later found to also occur within colonies in
Japan30,31. This southern China origin was previously supported
by the high diversity of Coptotermes species present (24 species32),
but the recent identification of at least nine synonymized species
of C. formosanus in the region undermines this hypothesis33.
Recent phylogeographic studies using mitochondrial DNA
(mtDNA) have also struggled to determine the origin of this
species, as the variation of this marker is extremely low. These
studies found either no variation between samples from Taiwan,
China, and Japan34,35, or extremely low levels36–38. Even the
complete mitochondrial genome reveals more than 99.9% simi-
larity, with only a six nucleotide difference between three Japanese
islands39. Overall, these studies have failed to conclusively identify
the origin of the species within East Asia; however, they all suggest
that the Chinese, Taiwanese, and Japanese populations are closely
related, hinting at an early human-mediated movement of the
termite throughout this region34,35,37,38,40.

Several studies have also attempted to reconstruct the invasion
history of C. formosanus. However, these studies have similarly
suffered from the lack of genetic variation in the mtDNA present
within native populations36,41–43. As a result, no mtDNA varia-
tion was found in Hawaii41, and only 0–0.3% of variation was
found on three mtDNA genes despite global sampling, with
clades separated by a maximum of 3 bp differences37. Although
the lack of mtDNA variation hampers the reconstruction of the
invasion history of this species, several studies have found that
introduced populations do belong to the same clade, suggesting
that US populations of C. formosanus arise from at least two
introduction events out of eastern Asia36,42–45. Based on micro-
satellite markers, at least five different sources of introduction
have been suggested46, with high similarity between the popula-
tions of Hawaii, Louisiana, and North Carolina44. This finding
suggests that these introduced populations either stem from a
common native source population or that the mainland US
population originated from a Hawaiian bridgehead. Conversely,
strong differences in cuticular hydrocarbon signatures between
Hawaiian and continental US samples of C. formosanus suggest
that Hawaiian populations may not be the source of the con-
tinental US populations47. Overall, despite many studies
attempting to elucidate this termite’s path out of eastern Asia, its
exact invasion history remains unresolved.

In this study, we aimed to determine the origin(s) and the
number of introduction events of C. formosanus out of eastern
Asia and into the US. We sampled this species in both its native
and introduced ranges and used double digest restriction-site
associated DNA sequencing (ddRADseq48) to obtain markers of
high resolution (i.e., single-nucleotide polymorphisms, or SNPs).
We first conducted population structure and phylogenetic ana-
lyses of the global C. formosanus population to assess genetic
structure within its native range and determine the genetic rela-
tionship between native and introduced populations. Second, we
used approximate Bayesian computation (ABC) to decipher its
worldwide routes of invasion. Finally, we investigated
introduction-induced effects on population demography, such as
population bottlenecks, expansions, migration, and admixture, to
assess the consequences of the invasion on the global genetic
patterns of this species.

Results
The 359 samples yielded 0.16–43.7 million paired reads per
individual, with an average of 12.9 million reads. Thirty-four
individuals had a high amount of missing data (i.e., ≥30%), and
were thus removed from the dataset. The final dataset contained
22,229 polymorphic loci and 33,601 SNPs for 325 individuals
from the 22 populations, with an average coverage of 44× and
6.8% of missing data. To prevent linkage from affecting the
population structure and phylogenetic results, only one random
SNP per locus was kept. The inbreeding coefficients (FIS) as well
as the observed and expected heterozygosity values for each
locality are provided in Supplementary Fig. 1.

Population structure. Substantial structure was observed among
the C. formosanus populations from fastSTRUCTURE, with K=
15 best explaining the structure in the data (Fig. 1a, b; FST values
between all pairs of populations are supplied in Supplementary
Fig. 2). At this value of K, 10 out of the 15 native populations
represent distinct genetic clusters, with the five remaining local-
ities mostly grouping with their geographic neighbors. Con-
versely, the five US states segregate into two genetic clusters, with
one of the clusters comprised primarily of individuals from
Florida. In addition, the populations of mainland Japan and
Okinawa do not cluster together. Overall, when K= 15, the native
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and the invasive US populations share no strong ties with one
another, and K must be decreased to five before clustering
between the two becomes apparent (Fig. 1b). At K= 5, the entire
US range clusters as one genetic entity, with its strongest tie to the
native range being the Hong Kong region.

The PCA and DAPC revealed similar results to that of
fastSTRUCTURE. For the PCA, samples from a given native
locality mostly cluster together, suggesting that different native
localities are genetically distinct from each other (Fig. 2a). Three
main clusters are apparent: (1) southcentral China populations,
(2) eastern China/Japan populations, and (3) introduced US
populations (Fig. 2a). Again, Hong Kong and adjacent regions
were most similar to the invasive US populations. The find.
clusters function found strong support for 15 genetic clusters,

with southcentral China populations again distancing themselves
from eastern China/Japan and invasive US populations; however,
the DAPC could not effectively distinguish between eastern
China/Japan and US populations (Fig. 2b). Notably, the US
invasive samples were grouped into two separate clusters: (A) one
cluster including all US invasive populations (including some
Florida samples, and excluding Mississippi), and (B) a second
cluster including the other samples from Florida and the one
sample from Mississippi. Therefore, only samples from Florida
were split between the two genetic clusters.

Similar patterns were identified using fineRADstructure with
samples belonging to a given locality highly related to one
another, indicative of the high population structure in the native
range (Fig. 3). Notably, the entire US introduced population,
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Fig. 1 Genetic clustering of C. formosanus populations. a Pie charts of fastSTRUCTURE assignments (for K= 5) for each sampling location of C. formosanus
in its native and introduced range. Pie chart size is proportional to the number of samples. b fastSTRUCTURE assignment for each individual sampled for
K= 5 and 15. Each color represents a distinct genetic cluster and each vertical bar represents an individual.
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including Hawaii, clusters together. This analysis also uncovered
the three distinct clusters identified by the PCA analysis—two
solely comprising geographically adjacent native regions (south-
central China populations in one cluster and eastern China/Japan
populations in the other) and one grouping the entire US invasive
region with Hong Kong (Fig. 3).

Phylogenetic analysis. We constructed ML phylogenies for the
full set of individuals using a further refined dataset of SNPs to
determine if there were any strongly supported phylogenetic
lineages. The 22,229 unlinked SNPs were stripped of invariant
sites, leaving 21,542 SNPs to construct the tree. The MRE-based

bootstopping criterion was satisfied by 400 bootstrap replicates,
with the best-scoring likelihood and majority rule extended
consensus trees for the SNP dataset having a middling amount of
support throughout the topology; however, the tree was con-
sistent with results from the clustering analyses. First, the strong
population structure in the native range is again apparent as
almost every native population represents its own branch of the
tree (Fig. 4). In addition, the invasive US populations fall out as a
single clade and appear most closely related to Hong Kong
(Fig. 4). Interestingly, samples from Hawaii cluster at the base of
this “introduced” branch, despite the presence of five Louisianan
samples segregated within the Hawaiian samples.
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Invasion history. The first step of the ABC analysis found the
most support for the introduced US population originating from
admixture between southcentral and eastern Asia scenario (S1c;
375 out of 500 RF votes), rather than from southcentral China (46
RF votes) or eastern Asia (79 RF votes) exclusively. For the sec-
ond step, the Hong Kong region (i.e., Hong Kong, Jieyang,
Lufeng, Okinawa, Taiwan, and Xiamen), was separated from
eastern Asia (i.e., sub-eastern Asia—Fuzhou, Hangzhou, main-
land, and Wenzhou), with the introduced US population best
explained by admixture between eastern China and Hong Kong
(S2c) when considering only two-population admixture. How-
ever, this scenario was outvoted (only 31 RF votes) in the third

step when the possibility of admixture between all three popu-
lations was considered, regardless of the first admixture event
(S3b, c and d; 469 cumulative RF votes). In addition, sub-steps 2A
and 2B confirmed the inclusion of the Japanese populations into
the two eastern Asian sub-regions.

When the Hong Kong region was reintegrated within eastern
Asia, the fourth step (analyzing Hawaii separately from the
mainland US) was not conclusive, as two scenarios gained a
similar number of RF votes. The first one suggested that Hawaii
and the US mainland originated independently from eastern Asia
and southcentral China, respectively (S4c; 155 RF votes), while
the other proposed that Hawaii results from admixture between
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eastern Asia and southcentral China, with the US mainland
arising from a Hawaiian bridgehead (S4g; 136 RF votes). This
discrepancy seemed to be driven by a split between most Florida
samples and the rest of the mainland, which is also depicted in
fastSTRUCTURE. Indeed, sub-step 4 subsequently confirmed a
Hawaiian bridgehead to the US mainland (to Louisiana/Texas;
Sub4c; 194 RF votes), when the US mainland was split between
Florida and Louisiana/Texas. The fifth step confirmed that both
eastern Asian regions were involved in the invasion of Hawaii and
Louisiana/Texas (S5c; 291 RF votes), when the Hong Kong region
was separated from eastern Asia (i.e., sub-eastern Asia).

Finally, the sixth and final step revealed that the population in
Florida most likely resulted from admixture between Louisiana/
Texas (49%) and southcentral China (51%) 87 years ago, and
Louisiana/Texas to originate solely from the admixed Hawaiian

bridgehead population 98 years ago (Fig. 5a; S6c; 220 RF votes).
Also, the first introduction to Hawaii was estimated to have
occurred 138 years ago from admixture between the Hong Kong
region (48%) and sub-eastern Asia (52%). A detailed description
of the step-by-step ABC RF analysis, including the priors used for
each step, comparative scenario statistics and the posterior
parameter estimates for the final invasion model (S6c) is available
in Supplementary Tables 1–11, Supplementary Figs. 3–10, and
the Supplementary Methods.

Demographic history. The demographic history of each popu-
lation was inferred through Stairway Plot 2, using an average of
14,138 SNPs per population after SNPs with missing data were
filtered out. Distinct demographic histories were present in both
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the native and the introduced US ranges (Fig. 5b). Most native
populations have experienced a gradual decline in their effective
population size, while Fuzhou, Hangzhou, Jieyang, and the two
Japanese populations experienced a bottleneck followed by a
period of rapid growth. In the US populations, Hawaii and
Louisiana both underwent a gradual decline in their effective
population size, while Florida experienced a bottleneck followed
by a period of rapid growth (Fig. 5b), corroborating the ABC
results of an additional and distinct introduction event within
Florida.

Discussion
Our study unravels the global invasion history of C. formosanus,
retracing its invasion pathway out of eastern Asia and assessing
introduction-induced effects on its population demography and
genetic diversity. Our findings reveal that the global distribution
of C. formosanus has been shaped by multiple introductions out
of eastern Asia, coupled with a bridgehead event. The complex
invasion history of C. formosanus began with an initial intro-
duction in Hawaii (~1870) that originated from at least two
distinct events, and their admixture, out of sub-eastern Asia and
the Hong Kong region. This introduced Hawaiian population
later served as the source for the invasion of the US mainland
(~1930), where an additional introduction event from south-
central China occurred in Florida (~1940). These dates match up
well with the generally accepted timeline of its invasion to the US.
The first recorded observation of this species in the US dates back
to the early 1900s in Hawaii49,50, although there is evidence that it
had been established as early as 186951. Within the mainland US,
C. formosanus was first recorded in South Carolina (195752),
Texas (196553), and Louisiana (196654). However, its strong
association with military ports receiving and storing equipment
and supplies from the Pacific theater after World War II54 led to
the widely held theory that it was introduced to the US mainland
around this time period, aligning closely with our time estimates.

Much of the diversity present in the native range is highly
structured among the native populations, with almost every
native population representing a unique genetic cluster. The PCA

and low values of K revealed two primary groups within the
sampled Chinese range (eastern and southcentral China). Such a
split is found in other eastern Chinese organisms55,56, and has
been proposed to be a relic of the Last Glacial Maximum that
would have restricted available habitat for subtropical species to
the extreme southern edge of China57.

There was a slight reduction of genetic diversity within the
introduced US range compared to the entire native range. Yet, the
genetic diversity within each US population was equivalent to the
diversity present in each of the native populations, indicating this
termite’s invasion has not been accompanied by a drastic loss of
diversity at the population level (Fig. 5c). This finding differs
from a previous study comparing the diversity of C. formosanus
between its native and introduced range using microsatellite
markers, which found substantially reduced diversity in each
introduced population sampled relative to the native range46.
However, RADseq derived SNPs have been found to more
accurately estimate genome-wide diversity than
microsatellites58,59, which may explain the contrasting results
obtained in the present study. This outcome is perhaps surprising
because the founding event following an introduction usually
reduces diversity within invasive populations, suggesting that
multiple introduction events from distinct source populations
may have prevented and even reversed the loss of diversity within
the invasive range of C. formosanus.

Our clustering, phylogeographic and ABC results consistently
show that eastern China is the prominent source of the invasive
populations in Hawaii and the mainland US, congruent with the
hypothesis of Husseneder et al.46. Interestingly, Husseneder
et al.46 also identified two genetic clusters within the US main-
land, with South Carolina being distinct from Louisiana and
North Carolina. Unfortunately, samples from South Carolina
were not included in our analyses, preventing the identification of
a possible link between South Carolina and the second cluster we
found in Florida. In addition, we are unable to rule out a Japanese
influence in the C. formosanus invasion of the US, and whether
the Japanese populations60 are invasive. While the demographic
histories for both Okinawa and mainland Japan did display evi-
dence of a bottleneck, genetic diversity statistics of the two
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populations were not drastically different from Chinese popula-
tions and clustering between the two is not present unless K is
substantially reduced.

Human and merchandise transportation hubs have been
shown to be an important factor in the spread of invasive species
throughout the world3,5,61,62, and eastern Asia includes some of
the largest and busiest ports in the world, such as Hong Kong,
Shanghai, and Tokyo. The long history of both trade and
immigration between China and the Kingdom of Hawaii dates
back to the late 1700s, and centers around the southeastern region
of China (i.e., Hong Kong and neighboring areas) and Honolulu
(main port of Hawaii)63,64. Notably, the population of Chinese in
Hawaii drastically increased from 364 individuals in 1852 to
18,254 individuals in 188463, with most immigrants originating
from this southeastern portion of China. Japan has also had a
long history of immigration to Hawaii, from both the mainland65

and Okinawa66, as almost 200,000 Japanese moved to Hawaii
between 1886 and 192465. These large-scale immigration events
from eastern Asia coincide with the first suspected evidence of a
subterranean termite in Hawaii51.

Our ABC analysis suggests that the US mainland populations
of C. formosanus likely arose from an already established invasive
population in Hawaii through bridgehead rather than from an
independent introduction directly from the native range. Indeed,
cases of introduced populations themselves becoming the
source of further introductions are being recognized more com-
monly67–71, including in other eusocial insects like invasive ants.
For example, global phylogeographic analysis of the red imported
fire ant Solenopsis invicta revealed that after its primary intro-
duction event into the southeastern US from South America, this
southeastern US population served as the source for its further
spread to the rest of the world20,72. Furthermore, ants as a whole
display striking secondary introduction rates, with over 75% of
ants intercepted at US and New Zealand ports of entry origi-
nating from locations where they had already been introduced21.
While termite interceptions at US ports of entry have hinted at
their potential to spread via bridgeheads73, our study empirically
elucidates a bridgehead invasion in a non-ant social organism,
with C. formosanus utilizing Hawaii as a stepping-stone for its
subsequent invasion of the US mainland. This suggests that
bridgeheads may play a crucial role for social insects in achieving
multi-continental distributions, warranting further research into
the invasion histories of other globally distributed social insects.
For example, the West Indian drywood termite Cryptotermes
brevis (Walker) likely represents a bridgehead invader, as it is
native to the coastal deserts of Peru and Chile and is now invasive
on five continents27.

Bridgehead introductions have drastic effects on genetic
diversity as introduced populations often experience bottleneck
events. While some invasive species merely tolerate this genetic
depletion, some benefit from the periodic purge of deleterious
alleles through founder effects12,74–76. In this context, bridgehead
populations may reduce inbreeding depression in subsequent
invasive populations through the purge of deleterious alleles
during recurrent founder effects77. On the other hand, reduced
genetic diversity in bottlenecked bridgehead populations may
promote the rapid evolution of invasive traits, as rates of adaptive
evolution substantially increase with reductions in population
size78,79. For this reason, bridgeheads have been hypothesized to
be a stepping-stone for invasion by selecting for invasive
traits19,20,80,81. These traits may increase the ability of an invader
to be further spread to novel locations, confer greater ecological
advantage that enables them to outcompete native species, and
aid in circumventing the low genetic diversity in bottlenecked
populations82–86. Despite this hypothesis of adaptive spread as a
driver of the bridgehead effect, empirical evidence for this

evolution of invasiveness is still lacking22, and the evolution of
specific invasive traits within the Hawaiian population of C.
formosanus remains undetected.

The presence of two genetic clusters in the mainland US signaled
that the invasion pattern was more complex than just a single
introduction from the Hawaiian bridgehead, and subsequent ana-
lysis confirmed a separate introduction event from southcentral
China had indeed occurred. It seems most likely this additional
event occurred within Florida, given it clustered separately from the
other US populations and that the scenario describing Florida as a
result of admixture between Louisiana/Texas and southcentral
China was found most probable, as well as its unique demographic
history. We also considered the possibility of interspecies admixture
being the cause of Florida clustering separately, as a sister species of
C. formosanus, C. gestroi (Wasmann), is also established in Flor-
ida87. These species have overlapping nuptial flights88 and form
tandem pairs of reproductive individuals89,90; however, this
hypothesis was ultimately found to be unlikely, as hybridization
should be identifiable at low values of K. Furthermore, these two
species are also sympatric in Hawaii and Taiwan, and none of the
three regions display a highly negative FIS commonly observed due
to hybridization. Instead, Florida as a separate genetic cluster
appears to stem from a distinct introduction event out of
southcentral China.

Multiple events out of the native range from different source
populations differ from the invasion pattern observed in another
invasive subterranean termite, Reticulitermes flavipes. This species is
native to the eastern US and has been introduced to France,
Canada, the Bahamas, Uruguay, and Chile. Interestingly, most
introduced populations of this species seem to originate specifically
from New Orleans, Louisiana91,92. While New Orleans is an
important hub for global trade, this species is also present in major
trading cities along the eastern seaboard that have seemingly played
no role in their spread. This suggests that certain traits of R. flavipes
colonies within the New Orleans region may have pre-adapted this
population to invasion, such as their distinct breeding structure and
reduced antagonism between non-nestmates92,93, which they share
with introduced populations in France92,94–97 and Chile92. There-
fore, this finding is similar to the hypothesis suggested for bridge-
head populations, whereby the evolution of specific traits conferring
higher invasiveness primes a population for further invasion. This
similar scenario has been coined the ‘Anthropogenically Induced
Adaptation to Invade’ and suggests the evolution of adaptations to
human-modified habitats in specific native populations favor their
subsequent spread16. Such local pre-adaptation to invasion has been
observed in the native range of the little fire ant Wasmania aur-
opunctata, with natural populations mostly displaying small non-
dominant colonies headed by sexually produced reproductives,
while anthropogenic populations shift to large and dominant
supercolonies headed by clonal reproductives98. The similar life‐
histories of native anthropogenic populations and invasive popu-
lations suggest that these traits, which evolved within its native
range, may act as pre-adaptations to human-altered habitats and
favor its worldwide invasion16. Yet, despite being one of the most
widespread invasive termites worldwide, introduced colonies of C.
formosanus do not appear to have experienced a major shift in their
breeding system or colony structure when compared to native
colonies46,99,100. Therefore, the worldwide invasion of this termite
seems unrelated to these life-history traits. However, as native
samples in this study were collected solely from human-disturbed
habitats, we cannot be certain C. formosanus has not already
undergone selection toward anthropogenic landscapes in their
native range, like W. auropunctata. Whether there are other phy-
siological factors enhancing their ability to thrive in human-
modified habitats or whether no specific pre-adaptation is required,
meaning each native population has the capacity to produce an
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invasion viable propagule, remains to be seen. Overall, these find-
ings stress the need for comparative research between the intro-
duced and native range, where key evolutionary processes
promoting invasions may be occurring.

Methods
Sample collection and molecular methods. Coptotermes formosanus colonies
were sampled in both their native and introduced ranges (Supplementary
Table 12), with workers stored in 100% ethanol for subsequent sequencing. In the
native range, colonies were sampled across thirteen localities in mainland China
(southcentral China—Beihai, Changsha, Guilin, Hainan, Hengyang, Nanning, and
Xinyu; eastern China—Fuzhou, Hangzhou, Jieyang, Lufeng, Wenzhou, and Xia-
men), Hong Kong, and Taiwan. In the introduced range, colonies were sampled in
mainland Japan and Okinawa, as well as in Hawaii, Texas, Louisiana, Mississippi,
and Florida. Total genomic DNA of 359 workers was extracted following a mod-
ified Gentra Puregene extraction method (Gentra Systems, Inc., Minneapolis, MN,
USA), then libraries were prepared and sequenced at the Texas A&M AgriLife
Genomics and Bioinformatics Service facility following the protocol of Peterson
et al.48. Briefly, genomic DNA was first digested with the restriction enzymes SphI
and EcoRI. Following restriction digestion, each sample was ligated with unique
indexed adapters. Then, samples were PCR amplified with iProof™ High-Fidelity
DNA Polymerase (Bio-Rad), and purified using AMPure XP beads (Beckman
Coulter Inc.) to make the ddRADseq library. Each library pool was size selected to
a range of 300–500 bp using the BluePippin system (Sage Science Inc.). Quantity
and size distribution were assessed using the Qubit® 2.0 Fluorimeter (Life Tech-
nologies Corp.) and Bioanalyzer 2100 System (Agilent Technologies). Amplified
fragment libraries were then pooled in equimolar amounts and sequenced on six
lanes of an Illumina HiSeq 2500 machine to generate 150 bp pair‐end reads.

Raw read quality filtering and processing. Raw sequences for each lane were
examined separately to check for read quality and adapter contamination using
FastQC v0.11.8101, with reads of the two lanes then concatenated after ensuring no
lane discrepancies (i.e., R1’s & R2’s combined separately). Forward and reverse reads
were assembled and SNPs were generated using the de novo pipeline of Stacks
v.2.41102. The main parameters for the analysis were optimized following the r80 loci
method103. Briefly, a representative subset of samples was taken from the main
dataset to run through the de novo pipeline under varying values of its most influ-
ential parameter (-M, the number of mismatches allowed between putative alleles), in
order to identify the value that produced the greatest number of polymorphic loci
found in 80% of the population. After parameter optimization, filtered reads were run
through the de novo pipeline of Stacks, which built and genotyped the paired-end
data, as well as called SNPs using the population-wide data per locus. Only SNPs
present in at least half of the individuals in all populations were kept for downstream
analyses. In addition, alleles at low frequency (<0.05) and loci with high hetero-
zygosity (>0.7) were filtered out as these are likely byproducts of sequencing errors
and paralogs104. Furthermore, SNPs with <5× mean coverage and exceeding 200×
mean coverage were filtered out using VCFtools v.0.1.15105, to buffer against unlikely
SNPs and avoid highly repetitive regions of the genome. To prevent linkage dis-
equilibrium (LD) between SNPs from affecting the population structure and phylo-
genetic analyses, only one random SNP per locus was kept. All subsequent file format
conversions were accomplished through PGDSpider v.2.1.1.5106.

Genetic diversity and population structure. Genetic diversity (expected hetero-
zygosity (HE), observed heterozygosity (HO), inbreeding coefficients (FIS)), and
population differentiation (FST) indices for each locality were calculated in Stacks.
Population structure among the 22 sampled locations was analyzed using three
complementary approaches. First, population structure was assessed by estimating
the most likely number of genetic clusters (i.e., K) in the dataset using fas-
tSTRUCTURE v1.040107. fastSTRUCTURE runs were parallelized and automated
using Structure_threader108. Different values of K ranging from 1 to 22 were
analyzed, and the best value was selected using the chooseK.py function from the
fastSTRUCTURE package. Plots were created by Distruct v2.3109 (available at
http://distruct2.popgen.org). Second, we used both a principal component analysis
(PCA) and discriminant analysis of principal components (DAPC) to estimate
clustering in the data (see Supplementary Methods; Supplementary Figs. 11–12).
DAPC describes clusters in genetic data by creating synthetic variables (dis-
criminant functions) that maximize variance among groups while minimizing
variance within groups110. We first performed the PCA, then ran the find.clusters
clustering algorithm using the PCA results to infer the most likely number of
genetic groups, as DAPC requires prior groups to be defined. The Bayesian
information criterion was used to select the most likely number of genetic clusters.
Finally, the function optim.a.score to identify the optimal number of principal
components to inform the DAPC, as too few components could hinder dis-
criminatory power between groups, while too many could lead to overfitting. Both
the PCA and DAPC were run in R111 through the adegenet package112. Third, we
used the program fineRADstructure v0.3.2113 to infer population structure via
shared ancestry among C. formosanus individuals. Modified from fineS-
TRUCTURE114, fineRADstructure is specifically designed for RADseq data, and
does not require information about location of loci on chromosomes or phased

haplotypes. Loci were first reordered according to LD, as strong LD combined with
unsorted loci could result in an overconfident clustering of individuals. A co-
ancestry matrix was then constructed from the sorted loci and individuals were
assigned to populations with a burn-in period of 100,000 and 100,000 Markov
chain Monte Carlo iterations. Finally, a tree was constructed from the default
parameters, and results were visualized in R through scripts provided with the
program (available at http://cichlid.gurdon.cam.ac.uk/fineRAD structure.html).

Phylogenetic analysis. Maximum likelihood (ML) phylogeny among C. for-
mosanus individuals was inferred using RAxML v8.2.12115. We applied an acqui-
sition bias correction to the likelihood calculations as the alignments were
composed exclusively of SNPs116, removing all invariant sites in the alignments
with the Phrynomics R script (available at https://github.com/bbanbury/
phrynomics/). We then conducted a rapid bootstrap analysis and search for the
best-scoring maximum likelihood tree using the extended majority rule (MRE)-
based bootstopping criterion117 to determine an appropriate amount of bootstrap
replicates. All searches were performed using the GTR+G nucleotide
substitution model.

Invasion history. We inferred the invasion routes and colonization history of C.
formosanus by selecting the most likely evolutionary scenario using ABC118. The
number of competing scenarios exponentially increases with the number of
potential source populations and demographic events compared in the
analysis19,24, which requires considerable computational effort. Therefore, to more
efficiently allocate this effort, we utilized a recently developed random forests (RF)
machine learning tool to conduct model selection and parameter estimation (ABC
RF119). ABC RF requires a considerably reduced number of simulated datasets
compared with alternative methods, while also providing a more reliable estimate
of the posterior probability for the best model. We also decreased the required
computational effort by inferring the invasion history of C. formosanus through a
step-by-step analysis (six different steps), which is commonly performed in ABC
studies67,120,121. The mainland Japan and Okinawa populations were included in
the ABC analysis as a member of the eastern Asia region given their strong clus-
tering within the region in the population genetic and phylogenetic analyses (see
“Results”). In addition, two localities (Xinyu and Mississippi) were excluded from
all ABC steps as only one sample was available for each location. Briefly, the first
step aimed at identifying which region(s) of the native range (i.e., eastern Asia,
southcentral China, or an admixture of both) have contributed to the introduction
of C. formosanus, with the introduced US range pooled as a single population. The
second and third steps aimed at determining which region(s) of eastern Asia (i.e.,
only the Hong Kong region, only the other localities within eastern Asia, or an
admixture of both) played a role. The fourth and fifth steps tested for the origin of
the Hawaiian population and the possibility of a bridgehead effect in Hawaii; thus,
Hawaii was analyzed separately from the mainland US. Finally, the sixth step
considered the occurrence of a distinct introduction event to Florida.

Model simulations were first run in DIYABC v2.0122, with at least
10,000 simulations per model performed on 2000 randomly sampled SNPs for each
of the steps above. Priors were set uniform for all model parameters and selected
based on historical records. The timing of introduction events to the US was set to
between 50 and 300 years ago, with the condition that the introduction in Hawaii
(for steps 4–6) occurred prior to the introduction to the southeastern US,
consistent with historical records46. In addition, for all scenarios tested, the
decrease in effective size of an introduced population was allowed to vary between
1 and 100 migrants, and the duration of the bottleneck set to vary between 0 and
50 years for each introduction event. The range of all other priors was adjusted by
evaluating the posterior distributions of the preliminary simulated datasets, then
setting the prior distribution as wide as possible while retaining biological meaning.
All summary statistics included in the DIYABC software were used for each
analysis, and both model selection and parameter estimation were performed
through ABC RF119,123, available in the abcrf R package.

Exploring changes in population sizes. We inferred the demographic history of
each locality by using Stairway Plot 2124 to investigate recent changes in population
size (e.g., bottleneck, expansion, admixture, etc.). Unlike traditional skyline plot
methods for demographic inference which compute a likelihood for a whole
sequence125, Stairway Plot 2 instead calculates the composite likelihood of a given
SNP frequency spectrum (SFS)126,127. This method uses the expected number of
mutation(s) per base pair to measure time and θ per base pair to measure population
size (θ= 4Neµ, where Ne is the effective population size and µ is the mutation rate per
generation). The full catalog of SNPs was retained for this analysis; however, only
SNPs with no missing data (by population) were used in the SFS calculations due to
the difficulty of integrating missing data when modeling the SFS under coalescent
approaches. Folded SFSs for each locality were generated by the vcf2sfs R script128.
The demographic history for each population can be seen in Supplementary Fig. 13.

Statistics and reproducibility. Sampling locations and sample sizes for each
location are listed in Supplementary Table 12. More detailed descriptions of the
ABC and DAPC processes are available in the Supplementary Methods.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequence files are deposited at the National Center for Biotechnology Information
under BioProject accession number PRJNA666619. In addition, SNP data (.vcf) can be
downloaded from the Open Science Framework database, https://osf.io (https://doi.org/
10.17605/OSF.IO/QSBD5).
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