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Species delimitation 
and mitonuclear discordance 
within a species complex of biting 
midges
Phillip Shults1,4*, Matthew Hopken2, Pierre‑Andre Eyer1, Alexander Blumenfeld1, 
Mariana Mateos3, Lee W. Cohnstaedt4* & Edward L. Vargo1

The inability to distinguish between species can be a serious problem in groups responsible for 
pathogen transmission. Culicoides biting midges transmit many pathogenic agents infecting 
wildlife and livestock. In North America, the C. variipennis species complex contains three currently 
recognized species, only one of which is a known vector, but limited species‑specific characters have 
hindered vector surveillance. Here, genomic data were used to investigate population structure 
and genetic differentiation within this species complex. Single nucleotide polymorphism data were 
generated for 206 individuals originating from 17 locations throughout the United States and Canada. 
Clustering analyses suggest the occurrence of two additional cryptic species within this complex. All 
five species were significantly differentiated in both sympatry and allopatry. Evidence of hybridization 
was detected in three different species pairings indicating incomplete reproductive isolation. 
Additionally, COI sequences were used to identify the hybrid parentage of these individuals, which 
illuminated discordance between the divergence of the mitochondrial and nuclear datasets.

Speciation is a dynamic evolutionary process through which populations segregate into independently evolving 
lineages over  time1. When gene flow is restricted either through geographic, behavioral, or ecological isolation, 
the accumulation of genetic changes, through selection or local genetic drift, may lead to divergence and poten-
tially reproductive  isolation2–6. Thus, the amount of genetic differentiation and level of gene flow between closely 
related lineages can be used to evaluate the strength of this isolation and determine species  status7. Depending 
on the completeness of the speciation process between lineages, it can be challenging to unambiguously identify 
 species8. Shallow divergence and hybridization can mask both morphological and genetic differences. While the 
most accurate assumptions about species delimitation are derived from a multifaceted  approach9,10, genomic 
data has become a powerful tool to investigate species  boundaries11,12. Both substantial and fine-scale genetic 
divergence is being uncovered across many study systems, even in the absence of morphological  variation13–16. 
Species delimitation is especially important when working with organisms responsible for pathogen transmission, 
as misidentifications will lead to inaccurate vector surveillance data. Culicoides Latreille (Diptera: Ceratopogoni-
dae) biting midges are responsible for the transmission of many pathogens  worldwide17,18, including bluetongue 
virus (BTV) and epizootic hemorrhagic disease virus (EHDV). These viruses can cause severe symptoms and 
death in wild and domestic ungulates and are responsible for substantial economic losses  globally19,20.

In North America, one of the main BTV and EHDV vectors is Culicoides sonorensis Wirth and  Jones20, which 
belongs to the C. variipennis species complex. When originally described, this group consisted of five  subspecies21; 
though presently, three distinct species are recognized (C. occidentalis Wirth and Jones, C. sonorensis, and C. 
variipennis (Coquillet)) with C. albertensis Wirth and Jones and C. australis Wirth and Jones designated as syno-
nyms of C. sonorensis22. Despite the current taxonomic arrangement, species identification remains difficult due 
to very subtle morphological differences and overall genetic  similarities23,24. Additionally, the presence of cryptic 
species or hybridization within the complex could be further complicating proper species identification. Under 
laboratory conditions, C. sonorensis and C. occidentalis have been shown to  hybridize25, and both C. occidentalis 
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and C. variipennis occur sympatrically with C. sonorensis21. Hybridization with C. sonorensis in nature would 
represent a pathway for introgression, potentially for genes controlling vector  competency26.

Geographic isolation limits gene flow between populations, and thus, life-history traits influencing dispersal 
ability can drastically influence the level of gene flow among populations (e.g.27,28). Species with low dispersal abil-
ity are particularly likely to exhibit highly differentiated populations resulting in the evolution of cryptic species 
over a limited spatial  scale29. In contrast, species with high dispersal abilities are likely to maintain a high level of 
gene flow between populations. Studies of Culicoides species in Europe, Africa, and Australia have consistently 
revealed frequent gene flow between populations, even at continental  scales30–33. Culicoides species have been 
shown to randomly disperse away from their larval habitats, up to 2 km  daily34,35, and are also known to disperse 
via prevailing winds for hundreds of  kilometers36–38. The high dispersal ability of biting midges decreases the 
likelihood of geographic isolation between populations, and as a consequence, may not have played a major role 
in the diversification of this group. Instead, ecological or behavioral isolation can allow closely related species to 
occur sympatrically in distinct ecological niches, and may help explain species divergence within Culicoides39,40. 
The high rate of dispersal, potential for hybridization, and numerous sympatric populations make the C. vari-
ipennis complex an intriguing system in which to study species delimitation and may also provide insights into 
the mechanisms responsible for speciation within this group.

Here, we evaluated the genetic structure of the C. variipennis complex from broad-ranging sampling locations 
to test the current taxonomic hypothesis of three distinct species. We used ddRadSeq to analyze 206 individuals 
collected from 17 sites throughout the United States and Canada. We first estimated the overall genetic similar-
ity and population structure among these samples to delimit distinct lineages within the species complex. We 
then estimated the level of gene flow within and between the inferred species. As previous attempts to separate 
these species using common barcoding genes have been inconclusive, we sequenced a region of the COI gene to 
compare to the putative SNP species identifications. Additionally, we discuss the potential mechanisms control-
ling reproductive isolation within this species complex.

Results
SNP calling and clustering analyses. In total, 271 individuals were subjected to the ddRADseq proce-
dure and yielded an average of 2.08 million reads per individual. During the initial filtering, 36 individuals were 
found to have low-quality sequences (phred score of less than 25) and were removed from the dataset. Addition-
ally, 29 individuals were found to have more than 75% missing data and were also removed. The final dataset 
included 206 individuals from 17 sites and contained 3612 SNPs. The population structure inferred by fastSTRU 
CTU RE that best explains the data was K = 5. Structure plots showing K = 3–6 can be found in Figure S1. At 
K = 5, most individuals (86%) were unambiguously assigned to one group (98–100% assignment score; Fig. 1). 
Consistent with these results, the principal component analysis (PCA) and discriminant analysis of principal 
components (DAPC) grouped these individuals into five main clusters (Figs. 2a & S2). The main difference being 
that the PCA further segregated one cluster (blue, Fig. 2a) into two separate groups; east and west of the Sierra 
Nevada mountain range. Further support for the same five clusters was found in the maximum likelihood trees, 
with a high level of support from each approximation method (Figs. 2b & S3).

Inter‑ and intra‑species population genetics. The geographic distributions of these clusters closely 
align with the distributions of the species (then subspecies) described in Wirth & Jones (1957) (Fig. 1), and 
recent morphological analyses of individuals from this study supports the species level designation of these 
 clusters41. For the remainder of the manuscript, we will refer to each cluster by its corresponding species name. 
Culicoides occidentalis was located in Western North America, C. sonorensis in the Western and Southern United 
States (U.S.), C. albertensis in the Midwest U.S. and Ontario, C. variipennis in the Eastern U.S. and Ontario, and 
a fifth genetic group suggesting the occurrence of an additional, undescribed cryptic species in San Diego, CA. 
Notably, eight of the 17 sites had more than one species in sympatry, and one site had three species. At four sites, 
seven individuals were assigned to two genetic groups with an assignment score of ~ 50% for three individu-
als (scores = 45, 47 and 41%) and of ~ 25% for four individuals (scores = 34, 31, 25 and 24%), which suggests 
the occurrence of putative F1 or other types of hybrids (e.g., F2 or backcrosses). Interestingly, these hybrids 
were from three different species pairings (C. sonorensis X C. occidentalis; C. sonorensis X C. variipennis; and 
C. albertensis X C. variipennis). These hybrid individuals also stood out in the PCA, as they segregated between 
their parental clusters (Fig. 2a), as well as at the base of each parental branch in the phylogenetic tree (Fig. S3). 
In addition to these seven hybrids, 20 individuals had a secondary assignment score between 3 and 21%, signify-
ing potential introgression between those pairings. However, we are less confident in STRU CTU RE’s ability to 
identify this level of ancestry as other factors can also lead to mixed assignments.

The seven putative hybrids were excluded from the dataset used to calculate the intraspecies summary statis-
tics (rearranged by cluster), which resulted in the isolation of 566 SNPs after more stringent filtering was applied. 
The mean FST between species was 0.7147 (0.6541–0.7470), roughly 9 times higher than the mean FST between 
the populations (i.e., localities) within each species (see below; Tables 2 & S1). Similarly, both the aR and LKC 
values of intra-individual genetic distance show a low level of divergence/high level of similarity within each 
species, including the San Diego population (Table S2). The four species-specific datasets were used to calculate 
the interspecies summary statistics as well as test for isolation by distance (IBD). These datasets contained 22 
individuals of C. albertensis from four sites (3423 SNPs), 36 individuals of C. occidentalis from four sites (2714 
SNPs), 97 individuals of C. sonorensis from seven sites (2357 SNPs), and 29 individuals of C. variipennis from 
four sites (2960 SNPs). The expected and observed heterozygosity, FIS, and number of private alleles for each 
species are reported in Table S2. No species-level dataset was created for the San Diego species, as this species 
was uncovered in a single locality.
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When examining each species individually, C. albertensis, had no evidence of population structure (K = 1), 
and had low genetic differentiation among locations (mean FST = 0.054) (Fig. 3a; Table 2). Although there does 
seem to be a pattern of IBD, this was found to not be significant in this species (Mantel test, P = 0.238; Partial 
Mantel test, P = 0.714). The low number of locations sampled potentially limits the statistical power of these cor-
relations. The results obtained for C. occidentalis showed much more divergence compared to the other species, 
with populations being strongly differentiated from each other (mean FST = 0.411) (Table 2). Additionally, the 
fastSTRU CTU RE analysis suggested that each location of C. occidentalis sampled is distinct (K = 4) (Fig. 3b). 
While no IBD was found (Mantel test, P = 0.489; Partial Mantel test, P = 0.770), there seems to be a considerable 
amount of geographic isolation among populations of this species, with pairwise FST values ranging from 0.14 to 
0.70 (Table S4). Additionally, significant levels of dissimilarity were found between individuals from California 
and those from the other three populations (Fig. S4). In contrast, low genetic differentiation among locations 
were found for C. sonorensis (mean FST = 0.029), with varying levels of support for IBD in this species (Mantel test, 
P = 0.039; Partial Mantel test, P = 0.082) (Fig. 3c; Table 2). For this reason, the individuals from Colorado were 
combined into a single location, as were the individuals from Kansas. The fastSTRU CTU RE analysis suggested 
the occurrence of population structure in C. sonorensis (K = 2), with some individuals from Kansas belonging to 
a distinct group, though these were not highly divergent from any other C. sonorensis location (Table S4). Indi-
viduals of C. variipennis exhibited no evidence of population structure (K = 1) or of IBD (Mantel test, P = 0.587; 
Partial Mantel test, P = 0.125) (Fig. 3d). Consistently, almost no genetic differentiation was found among locations 
of this species (mean FST = 0.026) (Table 2).

Haplotype network. In total, 285 midges were included in the analysis of a 546  bp region of the COI 
gene. Four distinct haplogroups were identified with substantial genetic divergence between groups (p-dis-
tance = 2.99–3.30%) and little divergence within groups (p-distance = 0.25–0.86%; Fig. 4; Table 3). Consistent 
with the SNP datasets, C. occidentalis formed a divergent haplogroup, separated from the rest of its range. The 
mean percent divergence between the two C. occidentalis groups (2.99%) was similar to its divergence from the 
other species (3.01–3.30%). The San Diego population also clustered as a distinct group, with a similar level of 
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Figure 1.  Geographic distribution and structure plots for each collection site (black squares) overlaid on the 
historical distribution of the species described in Wirth and Jones 1957. The fastSTRU CTU RE results are for 206 
individuals inferred by 3612 SNPs and assuming five populations (K = 5). The vertical bars within each collection 
site represents an individual, with each color representing a cluster. The putative species identity of each cluster 
are as follows: Culicoides occidentalis (blue), C. sonorensis (teal), C. albertensis (yellow), C. variipennis (red), and 
an unidentified population in San Diego, CA (CASD) (green). The black bars above the overall structure plot 
indicates an individual for which the COI gene was also sequenced. The individuals inferred to be hybrids are 
labeled h1-7. This map was created using Inkscap v.1.1 (https:// inksc ape. org/).

https://inkscape.org/


4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1730  | https://doi.org/10.1038/s41598-022-05856-x

www.nature.com/scientificreports/

divergence from the other species (3.01–3.03%). Interestingly, C. albertensis, C. sonorensis, and C. variipennis 
were not separated from each other, and in some cases, C. albertensis and C. variipennis shared identical hap-
lotypes (Fig. 4, S5). Furthermore, these three species exhibit a mean percent divergence between individuals 
(0.80%) similar to the divergence observed among individuals within C. occidentalis (Table 3). Other than the 
grouping of C. occidentalis in California, there was no geographic clustering observed.

Discussion
Our study provides valuable insights into the population genetics of the C. variipennis species complex and high-
lights the presence of potential cryptic species. For most of the species examined, minimal genetic divergence 
was observed across locations, suggesting the maintenance of gene flow even over large geographic distances. 
The only exception was C. occidentalis, which showed a high level of geographic isolation, as well as two distinct 
COI haplogroups. We confirmed that mitochondrial data is not reliable to differentiate three out of the five spe-
cies, due to the lack of segregation between the mitochondrial haplotypes of C. albertensis, C. sonorensis, and C. 
variipennis. This stands in stark contrast to their clear differentiation and high level of divergence inferred from 
the SNP data. Though a substantial amount of divergence exists between all five species, low levels of hybridiza-
tion, and potentially introgression, are present in sympatric populations. While we do not know the fitness of 
these hybrids, but this could suggest that strong post-zygotic isolation barriers may have yet to evolve in this 
group. Thus, pre-zygotic isolation through either ecological or behavioral segregation is a possible mechanism 
maintaining divergence within this complex. With a considerable amount of geographic overlap between some 
species (Fig. 1), each sympatric population is potentially experiencing a set of unique selective pressures to 
maintain species boundaries.

The high degree of genetic differentiation between clusters inferred by the SNP data supports the current spe-
cies groupings of the C. variipennis complex (C. occidentalis, C. sonorensis, and C. variipennis), as well as raising 
C. albertensis and a cryptic species in San Diego, California to species status (Fig. S5). While this putative new 
species was only collected in San Diego, its true distribution could extend well into Mexico. While clear diver-
gence was observed in the SNP data, the mitochondrial data showed a different pattern of divergence. Culicoides 
albertensis, C. sonorensis, and C. variipennis have a considerable amount of genome-wide differentiation (Fig. 1); 
however, there was no clear differentiation of the COI gene (Fig. 4). In fact, several individuals of C. albertensis 
and C. variipennis shared identical haplotypes. Multiple studies have shown a high degree of genetic similarity in 
mtDNA between C. sonorensis and C. variipennis23,24,42, though it was proposed that this was due to misidentifi-
cations. As all of the individuals included in our mitochondrial haplotype analysis from the current study were 
identified to species using the SNP data, this lack of mitochondrial separation must have an underlying biological 
cause. This finding can result from historical introgression with “leaky” pre-zygotic isolation, or semipermeable 
species boundaries, which have been shown to produce mitochondrial introgression without detectable nuclear 
DNA introgression in some  taxa43,44. This is likely due to the fact that the mitochondrial genome is independent of 
the nuclear genome and thus unlinked to the genes contributing to reproductive  isolation45. However, we cannot 
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Figure 2.  (a) A 3D representation of the principal component analysis (PCA) of all individuals included in 
the study. Each color represents the cluster inferred from the structure analysis; C. albertensis (yellow), C. 
occidentalis (blue), C. sonorensis (teal), C. variipennis (red), and the unidentified San Diego population (green). 
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rule out that other possibilities could have caused this discordance, such as recent speciation and incomplete 
lineage sorting or  selection13,46. Regardless, it appears that the evolution of the mitochondrial genome is not 
congruent with the species tree of the C. variipennis complex. Notably, the SNP phylogenetic tree shows that C. 
occidentalis, and not C. sonorensis, is the sister taxa of C. albertensis and C. variipennis (Fig. S5). This suggests 
that the mtDNA similarity between C. albertensis, C. sonorensis and C. variipennis could stem from ongoing 
hybridization and introgression, rather than incomplete lineage sorting.

Little to no IBD or structure was found within C. albertensis, C. sonorensis, and C. variipennis indicating a 
substantial amount of connectivity among localities of these species (Fig. 3a,c,d). The number of populations 
inferred by fastSTRU CTU RE for C. sonorensis was K = 2; however, a mean pairwise FST of 0.0287 suggests that 
a high amount of gene flow exists between all locations. This could be an artifact of the propensity of delta K 
inferring two  populations47 or from a high level of relatedness among individuals from KS (Fig. S6). Interestingly, 
although no IBD was found in C. occidentalis, each location of this species clustered as a distinct population 
(Fig. 3b). The lack of IBD is therefore not indicative of a single, genetically homogeneous population, but rather 
stems from high levels of divergence between populations regardless of their geographic distances. Focusing 
sampling efforts on each of these species will surely permit robust landscape genetic approaches to gain under-
standing of the evolutionary forces driving population structure in this group. This will allow studying whether 
Culicoides population structure is characterized by uniform or discontinuous isolation by distance, as well as, 
isolation by adaptation (IBA) or by environment (IBE)48.

The strong genetic divergence between the C. occidentalis from California and the other populations was 
observed in both the SNP and mtDNA data (Tables 2, 3, Fig. 4). It is possible that this may represent a further 
cryptic species with a dispersal barrier created by the Sierra-Nevada mountain range (Fig. S4). This high level of 
differentiation within C. occidentalis could be due to geographic isolation alone; however, endosymbionts have 
also been shown to significantly increase mitochondrial diversity in the presence of geographic  structure49,50. 
Naturally occurring endosymbionts have been found in Culicoides midges, including C. sonorensis51,52, and 
recently, a Cardinium sp. was linked to mitochondrial divergence in C. imicola53. Further screening is needed 
to determine the diversity and abundance of endosymbionts infecting Culicoides midges, though the possibility 
remains that they could be playing a role in the phylogeographical structure of C. occidentalis if they are causing 
incompatibility between populations. Additionally, patchiness of the specialized larval habitat of C. occidentalis, 
not present in the other members of the C. variipennis complex, could create isolation between populations, as 
well as reduce the number of individuals within each population. A small effective population size with little to 
no immigration would allow for a strong effect from  drift54. While the populations of C. occidentalis outside of 
California were less diverged from one another, the lowest pairwise FST values between these populations were 
still greater than the highest pairwise values observed within any other species, consistent with the findings of 
Holbrook et al. (2000) (Table 2).

Similar to other species of Culicoides30,32,33,55, high values of the inbreeding coefficient (FIS) were observed in 
all species investigated in this study (Table S2). Although these previous studies have suggested that the observed 
high FIS are an artifact from a large number of null alleles, the consistent reporting of these findings across vari-
ous species using several types of molecular markers lends support to the hypothesis that high inbreeding has 
a biological origin in this genus. High levels of inbreeding and heterozygote deficiencies are common among 
 mosquitoes56–58, even when using markers with a low level of null  alleles59,60. Goubert et al. (2016) considered 
the typical Aedes albopictus population as “a network of interconnected breeding sites, each with a high level of 
inbreeding”. Although we cannot rule out all other possibilities, our results strongly suggest that some aspects 
of the reproductive biology of Culicoides induce inbreeding within populations. High FIS and low FST between 
populations can stem from high levels of migration between populations (i.e., homogenizing allele frequencies 
at large scale), followed by matings with close relatives within populations (i.e., increasing homozygosity without 
altering allelic frequencies). It is also possible that our sampling approaches (single night trapping) led to captur-
ing cohorts of closely related individuals.

Low levels of hybridization were found in some sympatric populations involving several different species pair-
ings. Under laboratory conditions, mating between C. sonorensis and C. occidentalis can produce viable offspring 
for at least six generations, though the hatch rate of the progeny is dependent on the species of the  mother25. A 
cross of female C. sonorensis and male C. occidentalis only yields a 7% hatch rate whereas the reciprocal cross 
yields a 75% hatch rate. This asymmetrical hybrid viability is likely caused by cytonuclear  incompatibility61,62, 
though endosymbionts have also been shown to cause reproductive  incompatibility63. Upon secondary contact of 
closely related species, and in the absence of post-zygotic reproductive isolation, the production of unfit hybrids 
can induce the rapid evolution of premating  barriers2,64–66. In most populations however, C. sonorensis females 
are unlikely to come across C. occidentalis males due to differences in mating behavior. Conversely, C. occidentalis 
females do come into contact with C. sonorensis males, who do not appear to have mate  discrimination67, and 
will likely attempt to mate with these heterospecific females. As there are demographic disparities (population 
size and structure) between these two species, as well as viable offspring produced from this cross, rampant 
hybridization and asymmetric introgression would be detrimental to C. occidentalis68. Strong selection against 
hybridization can maintain species boundaries, but as two of the ten C. occidentalis collected from Borax Lake in 
California (CABL) appeared to be F1 hybrids (Fig. 1), another mechanism, potentially differences in the larval 
habitat or mating behavior, appears to be limiting directional introgression from C. sonorensis.

Culicoides occidentalis females lay their eggs in highly saline environments (up to 88.0 parts per thousand 
(ppt))69, whereas C. sonorensis eggs will not hatch in water with salinity over 20.0  ppt70. However, ecological 
exclusion via the larval habitat would only limit introgression if the hybrids were inviable in highly saline environ-
ments, which does not appear to be the case. The difference in mating behavior between these two species may be 
a more likely mechanism by which the detrimental effects of hybridization are diminished. Culicoides occidentalis 
mates at the larval habitat while C. sonorensis mates at or near a  host22,71. Even if a C. occidentalis female mated 



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1730  | https://doi.org/10.1038/s41598-022-05856-x

www.nature.com/scientificreports/

with a C. sonorensis male, she would return to the high saline pools to lay her eggs and these hybrid offspring 
would have a high chance of only backcrossing within the C. occidentalis lineage. While only two C. occidentalis 
x C. sonorensis hybrids were tested in this study, both had C. occidentalis mothers (Fig. 4), providing evidence 
that this scenario takes place in nature. However, this type of isolation would not explain how C. sonorensis and 
C. variipennis maintain species boundaries in sympatry as they share a larval habitat. Further studies are needed 
to determine the mechanisms behind reproductive isolation within this group.

The C. variipennis complex is one of many vector groups in which species delimitation can be 
 challenging46,72–76; however, species identification is an integral part of vector surveillance. The species status 
of these group members has implications for vector surveillance, as any ambiguity in identification will lead 
to unreliable data. For example, while C. albertensis and C. sonorensis occur in sympatry, only C. sonorensis is 
reported as a vector  species77. The addition of the non-vector species when conducting serological surveys could 
lead to a severe underestimation of the infection rate within the vector species. As BTV and EHDV are expanding 
northward into eastern  Canada78, it has been suggested that the dispersal of C. sonorensis into new areas could be 
to blame for this  incursion42. Specimens assigned to C. sonorensis by Jewiss-Gaines et al. (2017) were included in 
the present study and cluster instead with C. albertensis (“ON”, Fig. 1). Thus, there are likely alternative reasons 
for the range expansion of these viruses, including an unidentified vector species outside of the C. variipennis 
complex, such as C. stellifer79,80. Molecular tools for accurate species-level delimitation within this complex is 
sorely needed for proper vector surveillance. Additionally, the detection of hybridization between a non-vector 
and vector species may be evidence of recent speciation, but it also highlights a potential path of introgression 
for genes controlling vector  competency81,82.

Our study shows that using a population genomic approach to analyze sibling species can identify species-
level divergence, fine-scale genetic structuring within species, and uncover the existence of hybrids and cryptic 
species in Culicoides. Radiation within the C. variipennis complex occurred despite the long-range dispersal 
capabilities of biting midges as well as hybridization between sympatric species. This does not preclude historical 
geographic isolation; however, we believe that behavioral and ecological isolation may have shaped evolution 

Table 1.  Collection site information and numbers of individuals retained for the SNP analyses.

Country State/Province Lat Long Collection date Collection method N Abbreviation

Canada British Columbia 49.3065 − 119.6323 5/7/2019 Pupal rearing 5 BC

USA California 39.0245 − 122.8515 8/14/2018 Pupal rearing 12 CACL

USA California 38.9811 − 122.6731 8/14/2018 Pupal rearing 9 CABL

USA California 32.5522 − 117.0628 11/7/2014 Light trap 15 CASD

USA Idaho 43.7065 − 116.4236 8/19/2014 Light trap 14 ID

USA Nevada 40.0521 − 118.4681 7/29/2013 Light trap 17 NV

USA Arizona 34.5792 − 112.4258 7/21/2010 Light trap 17 AZ

USA Utah 40.7844 − 112.1090 9/10/2018 Light trap 16 UT

USA South Dakota 43.7438 − 101.9509 8/6/2018 Light trap 10 SD

USA Colorado 40.6560 − 104.9878 8/8/2019 Light trap 15 COFC

USA Colorado 39.0546 − 108.5170 7/16/2013 Light trap 7 COME

USA Kansas 38.8793 − 98.4481 9/25/2018 Pupal rearing 16 KSLI

USA Kansas 39.2234 − 96.5906 7/17/2018 Light trap 18 KSMA

USA Texas 29.9515 − 99.6010 7/29/2017 Light trap 8 TX

Canada Ontario 43.2167 − 79.9500 7/5/2013 Light trap 8 ON

USA South Carolina 34.3080 − 81.7550 7/23/2014 Light trap 16 SC

USA Florida 30.4782 − 84.6401 8/27/2018 Light trap 3 FL

Table 2.  Mean pairwise FST within and between species. The between species FST values (below diagonal) 
were calculated using 566 SNPs and the within-species values (on diagonal) is the mean FST calculated from 
individual species-specific datasets (see Table S4).

Species C. albertensis C. occidentalis C. sonorensis C. variipennis

C. albertensis 0.055
(− 0.009 to 0.116) – – –

C. occidentalis 0.707 0.411
(0.143–0.704) – –

C. sonorensis 0.709 0.730 0.029
(0.006–0.069) –

C. variipennis 0.654 0.747 0.730 0.026
(− 0.006 to 0.045)

San Diego pop 0.714 0.719 0.706 0.734
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Figure 3.  For each species, an independent SNP dataset was used to calculate the most suitable K using 
fastSTRU CTU RE with the inferred clusters denoted by varying shades. A Mantel and partial Mantel (P-Mantel) 
test was used to test for IBD (shown as pairwise FST by log geographic distance) for each species in Genepop. 
The individuals from San Diego, CA are not included here as they were only found in a single population.
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within this group or is at least maintaining the current species boundaries. Significant geographic isolation was 
only found between populations of C. occidentalis, but more sampling is needed to determine if the lack of gene 
flow between California and the other populations represents an incipient speciation event or IBD. Additionally, 
focusing efforts in these various hybrid zones may provide a better understanding of the evolution of reproductive 
isolation in this group. Cryptic species have been reported in a number of other Culicoides species  complexes83 
and the analyses presented here could help to identify these putative species. Delimiting the species in these 
complexes, will not only aid in vector surveillance efforts, but continued study of the speciation of closely related 
vector and non-vector species could produce valuable evolutionary insights into vector competency.

San Diego

C. occidentalis

C. sonorensis

C. albertensis

C. variipennis

Hybrid

Unassigned haplotype

1

10

30

50
1 bp

or

h1

h2
h5

h4

h6

CABL-CACL

San Diego
(CASD)

BC-NV-UT

C. albertensis + C. sonorensis + C. variipennis

Figure 4.  A haplotype network inferred by a median-joining method, using 285 mitochondrial (mt) DNA 
sequences of the C. variipennis complex from 27 states in the U.S., as well as British Columbia and Ontario, 
Canada. The size of each circle represents the frequencies of the haplotype and the length of the lines connecting 
the circles corresponds to number of bp differences. Note that the dotted black lines also represent a single bp 
change. The 67 sequences obtained in the present study (see Fig. 1) are colored according the clusters assigned 
from the structure analysis. The four main groups of haplotypes (see Results) are circled.

Table 3.  Mean percent divergence (p-distance) within and between species clusters based on the COI gene 
(ranges listed in parentheses). Based on overall similarity, C. occidentalis was split into two groups (CABL; and 
BC-NV-UT) and C. albertensis, C. sonorensis, and C. variipennis were grouped into a single clade (alb-son-var).

Clade occ (CABL) occ (BC-NV-UT) San Diego pop alb-son-var

occ (CABL) 0.48
(0.00–0.73) – – –

occ (BC-NV-UT) 3.99
(3.20–5.49)

0.86
(0.00–1.65) – –

San Diego pop 3.01
(2.38–4.21)

3.66
(2.75–4.76)

0.25
(0.00–0.66) –

alb-son-var 3.30
(2.75–5.12)

3.76
(3.30–6.04)

3.03
(2.38–4.21)

0.80
(0.00–2.74)
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Materials and methods
Sample collection and sequencing. Culicoides midges were collected from 17 sites across the United 
States and Canada (Table 1). Specimens were collected either as pupae and reared to adulthood, or as adults 
using CDC light traps baited with  CO2 and UV light (Bioquip 2836BQ). Individuals morphologically assigned 
to the C. variipennis complex were sorted out from the by-catch and stored in 95% ethanol at -80 °C. Total DNA 
was extracted from individuals using a Puregene extraction protocol (Gentra Systems, Inc., D-5500A) with the 
addition of glycogen (ThermoFisher, R0561) to increase yields. DNA was only extracted only from females as 
their larger body size (compared to the males) produced sufficient amount of DNA for next-gen sequencing. 
The DNA quality was checked using gel electrophoresis and DNA concentration was measured using a Qubit 
3.0 fluorometer and a Qubit dsDNA HS assay kit (Invitrogen, Q33230). A total of 300–400 ng of DNA per sam-
ple was sent to Floragenex, Inc. for library preparation using the protocol from Truong et al. (2012). DNA was 
digested using the restriction enzymes MseI and PstI. After PCR amplification, the samples in each plate were 
pooled and sequenced on a lane of single-end 100 bp sequencing on a HiSeq4000 at the University of Oregon 
Genomics Facility, Eugene, OR.

Raw sequence filtering and processing. Raw sequence quality was first assessed using FastQC v.0.11.9 
and MultiQC v.1.784,85, and then reads were filtered and processed using Stacks v.2.386. Reads with a phred 
score below 25 were removed as well as individuals with a > 75.0% missing data. Next, reads were aligned to the 
C. sonorensis  genome87 (Accession: PRJEB19938) using the Burrows-Wheeler Aligner (BWA-mem)88. Finally, 
aligned reads were run through the reference-based pipeline of Stacks. Filtering options were set to only include 
loci found in at least half of the sampling locations (-p 8) and those occurring in at least 50% of individuals 
within those sites (-r 0.5)89. The minimum allele frequency was set to 0.05 to protect against potential sequenc-
ing  errors90, and only the first SNP per locus was kept to minimize linkage disequilibrium between SNPs from 
influencing population structure and phylogenetic analyses. All subsequent file reformatting was done with 
PGDSpider v.2.1.1.591.

Clustering analysis. Population structure in the overall dataset was evaluated using fastSTRU CTU RE 
v.1.04, with Structure_threader utilized to parallelize distinct runs of  K92,93. Models were fitted with the number 
of genetic clusters (K) set to range from 1 to 10. The most suitable value of K was selected using the chooseK.py 
function from the fastSTRU CTU RE package which selects the model that maximizes the marginal likelihood of 
the data. Using the output from fastSTRU CTU RE and Distruct v.2.3 (http:// distr uct2. popgen. org), a bar plot was 
created where each individual is represented by a vertical line divided into K colored segments with the length 
of each segment being proportional to the estimated membership in each of the inferred K groups. A map of 
the structuring at each collection site was created using Inkscap v.1.1 (https:// inksc ape. org/). The clustering of 
individuals into the distinct genetic groups was also visualized using a principal component analysis (PCA) and 
a discriminant analysis of principal components (DAPC). The most likely number of genetic groups was inferred 
by the find.clusters algorithm for the PCA and the optimal number of principal components to inform the DAPC 
was defined using the function optim.a.score. Both were performed in  R94 through the adegenet  package95.

Any individual with more than 25% of their loci grouping with a second cluster in the fastSTRU CTU RE 
analysis was marked as a hybrid and removed from the phylogenetic analysis, due to the uncertainty of assigning 
them to a given species. Maximum likelihood phylogeny among individuals was run using RAxML v.8.2.1296. 
An acquisition bias correction was applied to the likelihood calculations as alignments were solely composed of 
SNPs, with each invariant site removed through Phrynomics (https:// github. com/ bbanb ury/ phryn omics)97. The 
GTR + G nucleotide substitution model was used for each search. A rapid bootstrap analysis and search for the 
best-scoring maximum likelihood tree was executed using the extended majority rule-based bootstopping crite-
rion to achieve a sufficient number of bootstrap  replicates98. Additionally, to cross-validate our results, a second 
phylogeny was inferred in W-IQ-Tree version 1.6.1299, using the TVM + F + G4 substitution model determined by 
 ModelFinder100,101. Branch support was calculated using 1000 ultrafast  bootstraps102 and a Shimodaira–Hasegawa 
like approximate likelihood-ratio test (SH-aRLT)102,103.

To measure the amount of divergence between genetic clusters, a new SNP dataset was generated with indi-
viduals grouped by cluster rather than locality. Additionally, to measure the amount of divergence within each 
genetic cluster, four cluster-specific datasets (grouped by site) were also generated. SNPs were obtained from these 
new datasets using the same processing methods above except with more stringent filtering parameters. Only 
SNPs that occurred in at least 75% of the clusters or collection sites and at least half of the individuals within those 
groups were included. Genetic diversity estimates (FIS, HE, and HO) and population differentiation (pairwise FST) 
were calculated for each species dataset using Genepop v.4.7.0104. Population differentiation was not calculated for 
the new species found in San Diego, as only a single population of this species was uncovered. Rousset’s distance 
 aR105 and Loiselle’s kinship coefficient (LKC)106 were calculated respectively with SPAGeDi v.1.5107. Geographic 
distances among localities were calculated as both Euclidean and anisometric distances and a Mantel test and a 
Partial Mantel test were preformed to test for isolation-by-distance (IBD)108. Tests for areas of significant genetic 
dissimilarity among individuals using aR were implemented in MAPI using 1000  replications109.

Mitochondrial sequencing and haplotype network. Mitochondrial DNA haplotypes were obtained 
from a subset of 67 individuals from the five genetic clusters. PCR reactions were performed using a Taq-Pro 
COMPLETE kit (Denville Scientific, CB4065-4) targeting a partial region of the COI gene with the Lep50 primer 
set from Folmer et al. (1994) and the thermocycler profile from Herbert et al. (2003). PCR products were cleaned 
using an EXOSAP-IT kit (ThermoFisher, 78201.1.ML) and prepared for sequencing using a BigDye Terminator 

http://distruct2.popgen.org
https://inkscape.org/
https://github.com/bbanbury/phrynomics
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v.3.1 Cycle Sequencer Kit (Applied Biosystems, 4337454). Sanger sequencing was done using an Applied Bio-
systems 3500 Genetic Analyzer. Chromatograms were cleaned and aligned using the software Geneious v.9.1110.

A haplotype network analysis was conducted using the 67 COI sequences obtained in this study combined 
with 218 C. variipennis complex sequences previously collected from 25 states across the U.S.111. Sequences were 
aligned in MEGA v.10.1.8112 and trimmed to ensure all sequences contained identical lengths. A median-joining 
analysis was performed using NETWORK v.5.0.1.0113. Specimens collected in this study were assigned a color 
based on the results from the SNP clustering analyses while the remaining samples were left unassigned. All 
individuals were used to calculate the mean uncorrected p-divergence between and within the different group-
ings inferred from the haplotype network using MEGA.

Data availability
The data reported in this study will be deposited in the Open Science Framework database upon acceptance, 
https:// osf. io (https:// doi. org/ 10. 17605/ OSF. IO/ E3Z72). Mitochondrial sequences obtained in the current study 
have been deposited under Genbank Accession Numbers OL604713—OL604779.
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