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Plasticity in life history traits is commonly used to explain the

invasion success of social insects. While intraspecific plasticity

is often recognized, interspecific variability is easily overlooked,

whereby different species exhibit different strategies. The

presence of many queens per colony and the collapse of colony

boundaries have favored invasiveness for many ant species.

However, these strategies are absent from other successful

social invaders. Here, we report that various life-history traits

may differentially enhance the invasion success in social

insects. We suggest that other aspects of their breeding

system, like asexual reproduction, intranidal mating and pre-

adaptation to inbreeding may enhance their invasion success.

Thorough comparative studies between native and introduced

populations or studies of closely related species will help

identify additional traits favoring the invasion success of social

insects, and ultimately provide a more comprehensive picture

of the evolutionary factors enhancing invasiveness across this

phylogenetically and ecologically diverse group.
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Introduction
The rise of worldwide trade has facilitated the movement

of many species of plants and animals outside of their

native ranges. These species are usually introduced in the

urban environment, a rapidly growing ecosystem that is

becoming a major part of modern landscapes. Species

introductions are often associated with radical changes in

the abiotic and biotic pressures these species have

evolved to face in their native and natural ranges [1,2].

These sudden ecological changes are frequently accom-

panied by a reduction in genetic diversity through bottle-

necks, which may generate co-adapted gene complexes

conferring novel and advantageous traits in the invaded

environment. The myriad of novel pressures that
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introduced, bottlenecked populations may encounter

within a short timeframe therefore represents an unprec-

edented potent evolutionary force.

Social insects are particularly successful invaders, repre-

senting around 40% of the top 100 invasive invertebrates

[3��,4,5]. These invaders frequently triumph in the com-

petition for ecological resources allowing them to spread

in their new introduced range, outcompeting native spe-

cies, despite these latter species being shaped by natural

selection to fit their local conditions. In addition to their

behavioral, physiological and morphological variation [6],

social insects display extreme plasticity in their breeding

systems that may influence their invasion success. Many

invasive populations exhibit variation from the classical

mating system and colony structure, consisting of a colony

headed by a single queen (and a king in the case of

termites) inhabiting one nest. Species invasions have

occurred many times independently within and across

each lineage of social insects: ants, bees, wasps and

termites. This provides an outstanding opportunity to

identify key life history traits enhancing invasion success

in this phylogenetically and ecologically diverse group. In

this review, we examine whether different invasive social

insects share common mating systems and colony breed-

ing structures, or whether they evolve unorthodox mating

systems allowing them to circumvent the loss of genetic

diversity to successfully establish, dominate and spread in

their novel environment. We discuss how reiterated tran-

sitions from native natural environments into introduced

urban landscapes by different social insect species can

provide insights into the direction and the repeatability of

evolution of these life history traits in this group.

Number of reproductives per colony

Many invasive social insect colonies are headed by

numerous reproductive queens (polygyny) [3��,7–9]. This

type of breeding system increases colony survival, freeing

the colony of the fate of a single queen, and greater colony

growth due to an increased production of workers [10]. It

enhances invasion success through the production and

allocation of a large number of workers to dominate

resources [11]. Polygyny also increases the chance that

a queen is included in a propagule that gets transported

and successfully establishes after its introduction (i.e.

propagule pressure) [8,12]. It increases the chance of

introduction, establishment and further spread within

the introduced range through additional human-mediated

jump dispersal. Notably, the reproduction of multiple

unrelated queens within a colony decreases relatedness

among nestmates. As extreme polygyny eliminates indi-

rect fitness, it challenges kin selection and calls into
www.sciencedirect.com
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question the long-term evolutionary stability of this

breeding structure [13].

Ants

The occurrence of multiple queens in introduced colo-

nies has been observed in many invasive ant species

(Figure 1). This feature has been extensively reviewed

in invasive ants and is undeniably associated with inva-

sion success in this group [14]. Notably, some exceptions

still occur suggesting that polygyny is not strictly required

for successful invasion in ants, as a few species establish

and spread despite some of their colonies being mono-

gyne, such as Tetramorium immigrans [15�], Brachymyrmex
patagonicus [16�], or the monogyne forms of Solenopsis
invicta [17] and S. geminata [18]. Notably, most of these

species are not completely monogyne, but exhibit a

flexible breeding structure, including both monogyne

and polygyne colonies.
Figure 1

Number of reproductives per nests, colony structure and use of asexual rep

reproductives per nest is divided into (a) their ability to produce additional s

in most introduced colonies. The data used to generate this figure, and the 

Table S1.
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Wasps

Increased polygyny has been described in introduced

wasps, especially in the Vespula genus including three

well-known invasive species, Vespula germanica, Vespula
vulgaris and Vespula pensylvanica. In some parts of their

ranges, colonies may survive winter and shift from an

annual to a perennial colony cycle, with colonies living for

multiple years [19]. This change allows the recruitment of

queens, enabling the development of large polygyne

colonies over several years. However, this shift to a

polygyne breeding structure is more likely the result of

milder winters in their invaded ranges [20], than an actual

post-introduction change of their colony breeding struc-

ture. Indeed, similar variation in queen number and

overwintering of colonies has been reported in the native

range of V. pensylvanica in California [21]. The weak

nestmate discrimination already present in its native

range may pre-adapt this species to transition to polygyny,

favoring the adoption of foreign queens in late season
Current Opinion in Insect Science 

roduction in invasive ants and termites. In termites, the number of

econdary reproductives and (b) the actual type of reproductives found

associated references, are provided in Supplementary material
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[22�]. Plasticity of this trait in the native range may

therefore represent a pre-existing condition that facili-

tated their invasion, rather than a novel evolution in

invasive populations of these wasp species.

Bees

Interestingly, polygyny has not been reported in invasive

social bees. Although Bombus terrestris or the Africanized

and European honey bees Apis mellifera are among the

most widespread invaders [23], none of them exhibit a

polygyne breeding structure. Their worldwide distribu-

tions most likely stem from their extensive transport for

pollinator services than their ecological dominance. A.
mellifera colonies have indeed suffered high mortality in

many regions in both its native and introduced ranges,

with beekeepers struggling to keep them alive [24].

Termites

The hypothesis of enhanced invasion success with high

numbers of reproductives has received less support in

invasive termites (Figure 1). Instead, their invasion suc-

cess has been suggested to stem from the easy generation

of new reproductives, rather than their actual number. In

most lower termite species and some higher termites,

workers and/or larvae can differentiate into secondary

(neotenic) reproductives. This feature allows any group

of foraging workers trapped in a transported piece of wood

to readily produce secondary reproductives, and thereby

become a viable propagule [4,25]. Yet, introduced popu-

lations of invasive termites that have been studied exhibit

a small proportion of colonies headed by secondary

reproductives (i.e. extended families), and even then,

these may have only a few secondary reproductives

present, as in Coptotermes formosanus [26]. Invasive popu-

lations of the higher termite Nasutitermes corniger have

multiple primary reproductives that can arise from either

multiple kings and queens engaging in cooperative

founding and/or the production of supplemental kings

and queens within the nest [27]. This suggests that the

production of multiple reproductives within colonies,

either neotenic or primary reproductives, may favor the

establishment and rapid spread of an invasive species.

However, it is less clear whether this strategy is used to

achieve local dominance of already established colonies

in a given environment in the way many ants dominate

their invasive ranges with highly polygyne colonies.

Interestingly, the production of neotenics and supple-

mental primary reproductives by termites and highly

polygyne ant colonies are both characterized by intranidal

mating, which may reduce biotic and abiotic pressures of

the novel environment during the vulnerable dispersal

and colony foundation stages. Reticulitermes flavipes and

Reticulitermes urbis may represent the exception, as all

colonies in their introduced ranges are headed by hun-

dreds of secondary reproductives [28]. In these species,

the high number of reproductives allows colonies to be

unusually populous and spatially expansive.
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Supercoloniality — reduced aggression toward non-

nestmates

In addition to polygyny, social structure may also drasti-

cally change between native and invasive ranges. Social

structure ranges from monodomy, whereby each colony

occupies a single nest, to polydomy, where colonies

comprise several nests exchanging workers, brood and

reproductive queens [29–32]. In some invasive species,

the lack of aggression between workers from different

nests enables the formation of supercolonies — an exten-

sive polydomous colony [8]. This social structure reduces

intraspecific competition, leading to a dense network of

interconnected nests, genetically undistinguishable from

each other. It therefore allows invasive populations to

reach tremendous densities and outcompete native spe-

cies by allocating a large number of workers to monopo-

lize resources [8]. Similar to polygyny, the collapse of

colony boundaries eliminates relatedness among nest-

mates, and therefore workers’ indirect fitness. Conse-

quently, unicoloniality is often described as an evolution-

ary dead-end, with no unicolonial species but only

unicolonial populations [29].

Although unicoloniality is undeniably associated with

many ant invasions (Figure 1), the number and size of

the supercolonies encountered within introduced ranges

can differ greatly among and within species. The entire

invasive range of some invasive species may comprise a

single huge supercolony spanning several thousand km,

such as Wasmannia auropunctata, Nylanderia fulva and

Pheidole megacephala [33–35]. While in other species,

the invasive range may consist of several supercolonies,

such as Anoplolepis gracilipes [36,37]. Sometimes, the

number and size of the supercolonies may even be highly

variable between populations of the same species, such as

the Argentine ant L. humile. In this species, the invasive

range in California comprises five supercolonies from 1 to

1000 km in length [38]; while the invasive range in

southern Europe is made of only two supercolonies,

one is 6000 km long, whereas the other is only a few

km long [39]. In invasive populations of Myrmica rubra,
Brachyponera chinensis and Technomyrmex albipes, colonies

occupy several interconnected nests, forming small super-

colonies (<1 km) [40��,41,42]. This variation in super-

colony size raises the question of where a ‘large polydomous
colony’ ends and a ‘supercolony’ begins [29,43]. It is note-

worthy to point out that some invasive populations are not

unicolonial, rather each colony inhabits only a single nest.

Such a pattern is observed in B. patagonicus [16�], T.
immigrans [15�] or even both social forms of the highly

invasive S. invicta [44].

The formation of supercolonies is less prevalent in ter-

mite species, and has been described in only a single

species (Figure 1). In R. urbis, the introduced population

in Italy and France consists of a single supercolony

without aggression among different nests that gradually
www.sciencedirect.com
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expands through budding [45]. To a lesser extent, intro-

duced colonies of R. flavipes are spatially expansive, with

no genetic differentiation among workers separated by up

to 1.5 km [46]. Although most colonies are still genetically

distinct from each other, the absence of intraspecific

antagonism between non-nestmates allows frequent

fusions between colonies [47]. Overall, these findings

also call attention to the threshold between supercolonies

and large expansive polydomous colonies. Importantly,

these traits also occur to a lesser degree in the native range

[48], a pre-existing trait that may have enhanced the

invasion success of this species.

Unorthodox reproductive strategies

Several additional mating strategies have been suggested

to favor invasive social insects, allowing them to over-

come or reduce the loss of genetic diversity within intro-

duced populations. In the invasive bee Apis cerana, mul-

tiple matings per queen (polyandry) may artificially

increase the number of migrants (i.e. through stored

sperm), thus extending genetic diversity brought from

the native population [49��,50]. This diversity is later

transmitted directly through the production of new

queens by the founding queen, and indirectly through

the production of males by workers, daughters of the

founding queen [51�]. In the Asian needle ant B. chinensis,
introduced colonies have similarly low levels of genetic

diversity as those in the native range, although the

introduced population experienced a severe bottleneck

[40��]. Inbreeding pre-exists in the native range, where

generations of sibmating may have reduced inbreeding

depression through the purifying selection of deleterious

alleles, and thus lower the cost of a genetic bottleneck

during introduction [40��]. In the invasive wasp V. germa-
nica, drones avoid aggregating with their nestmates dur-

ing nuptial flights, therefore reducing the chance of

inbreeding [52].

In addition, thelytokous parthenogenesis seems particu-

larly prevalent in invasive species (Figure 1), which

suggests this unorthodox mating strategy may provide

evolutionary advantages to invade. In the tropical fire ant

S. geminata, polygyne colonies produce queens asexually

but workers are produced sexually via mating with males

from the sexually reproducing monogyne colonies [53��].
However, this strategy does not prevent the production of

diploid males by polygyne colonies, sometimes represent-

ing 100% of the sampled adult males [18]. In response,

polygyne colonies minimize this cost by the founding of

nests by the cooperation of multiple queens and canni-

balism of diploid male larvae [54�]. Parthenogenesis is

also present in some invasive populations of the ant

species W. auropunctata, Vollenhovia emeryi, A. gracilipes
and Paratrechina longicornis, where new queens are clones

of their mothers while sons are clones of their fathers.

This twofold asexuality segregates female and male gene

pools into two distinct lineages [37,55–57]. Workers arise
www.sciencedirect.com 
from the hybridization of these lineages (i.e. through

sexual reproduction), and are therefore 100% heterozy-

gous. A single queen may therefore invade a new popu-

lation, and its daughter queens and sons can interbreed

without suffering inbreeding depression [56]. Notably, a

similar outcome is achieved in the invasive population of

the sexually reproducing ant N. fulva. In this species,

sexually antagonistic selection selects for different alleles

in males and females for specific loci, which results in

completely heterozygous females (i.e. sexually produced)

at a substantial part of the genome [58��].

In some clonal populations of the ant Mycocepurus smithii,
unmated queens can produce both new queens and

workers asexually, while sexual reproduction is still prev-

alent in other populations [59,60]. In this species, a single

clonal queen can invade a new population without the

need for mating. Strategies with similar outcomes are

reported in the queenless ants Pristomyrmex punctatus and

Ooceraea biroi, in which all workers (and ergatoid queens

for P. punctatus) are capable of thelytokous reproduction

[61,62]. In these species, any small colony fragment has

the potential to become a viable propagule without the

necessity of mating [63].

Interestingly, although the use of unorthodox reproduc-

tive mating strategies to overcome genetic depletion [64–

68] or to remove the need of mating [69] has been

reported in some non-invasive termite species. Yet, these

mating strategies seem unrelated to invasiveness in this

group. In some species, secondary queens arise through

thelytokous parthenogenesis after the primary queen dies

[66]. The mating of these secondary queens with the

primary king to which they are unrelated (a breeding

system known as asexual queen succession; AQS) main-

tains the heterozygosity among the offspring while purg-

ing the primary queen-derived genomes of deleterious

mutations [66]. Interestingly, neither of the two invasive

species of the genus Reticulitermes reproduce by AQS,

despite this genus comprising at least three AQS species

[65–67].

Conclusion
In today’s world, where global trade lowers geographical

barriers and human activity constantly reshapes ecological

borders, biological invasion of many species, including

social insects, represents one of the major economic and

ecological threats. Determining whether native and inva-

sive populations display different breeding structures and

mating systems represents the first step in this investiga-

tion. The second step is to determine when the shift

arises, distinguishing between existing phenotypic plas-

ticity of this trait in the native range or its adaptive

evolution in the introduced range, potentially enhanced

by genetic drift following introduction events. Species

introductions are characterized by gradients of potential

adaptive drivers (e.g. competition, predation, pathogens,
Current Opinion in Insect Science 2021, 46:24–30
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food, and pollution). Assessing variation of a trait along

these gradients in both native and introduced ranges may

provide insights into its evolutionary trajectories. Species

invasions therefore provide fortuitous experimental set-

tings to investigate the range of social insect mating

strategies and their evolution in response to a number

of adaptive drivers. Identifying the drivers of trait differ-

ences in both the native and introduced ranges will

broaden our understanding of the mechanisms linking

species invasions and mating systems in this group.
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29. Helanterä H, Strassmann JE, Carrillo J, Queller DC: Unicolonial
ants: where do they come from, what are they and where are
they going? Trends Ecol Evol 2009, 24:341-349.

30. Jackson DE: Social evolution: pathways to ant unicoloniality.
Curr Biol 2007, 17:R1063-R1064.

31. Steiner FM, Schlick-Steiner BC, Moder K, Stauffer C, Arthofer W,
Buschinger A, Espadaler X, Christian E, Einfinger K, Lorbeer E
et al.: Abandoning aggression but maintaining self-nonself
discrimination as a first stage in ant supercolony formation.
Curr Biol 2007, 17:1903-1907.

32. Chapuisat M, Bernasconi C, Hoehn S, Reuter M: Nestmate
recognition in the unicolonial ant Formica paralugubris. Behav
Ecol 2005, 16:15-19.

33. Eyer P-A, McDowell B, Johnson LNL, Calcaterra LA,
Fernandez MB, Shoemaker D, Puckett RT, Vargo EL:
Supercolonial structure of invasive populations of the tawny
crazy ant Nylanderia fulva in the US. BMC Evol Biol 2018,
18:209.

34. Fournier D, De Biseau JC, Aron S: Genetics, behaviour and
chemical recognition of the invading ant Pheidole
megacephala. Mol Ecol 2009, 18:186-199.

35. Le Breton J, Delabie JHC, Chazeau J, Dejean A, Jourdan H:
Experimental evidence of large-scale unicoloniality in the
tramp ant Wasmannia auropunctata (Roger). J Insect Behav
2004, 17:263-271.

36. Thomas ML, Becker K, Abbott K, Feldhaar H: Supercolony
mosaics: two different invasions by the yellow crazy ant,
Anoplolepis gracilipes, on Christmas Island, Indian Ocean. Biol
Invasions 2010, 12:677-687.
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