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Abstract
Extrema in temperature tolerances are a selective factor contributing to variation between populations and species. The 
climate variability hypothesis (CVH) posits that organisms exposed to a wider range of temperatures are expected to have a 
wider thermal range. This pattern is common across many taxa. In this study, we investigate how social insects vary in thermal 
tolerance. We test if social role in termites influences tolerance to temperature maxima, and given ties between social roles and 
body size, whether it is a primary correlate. Our methods examined upper lethal limit (ULL) and dry weights of five termite 
species representing two families across four sites in Texas and Costa Rica. With the addition of previously recorded upper 
heat tolerances in the literature, we conclude that termites follow the CVH and upper heat tolerance is positively correlated 
with absolute latitude. Our results show a differentiation in heat tolerance by task (collected from foraging site versus from 
nest) for Nasutitermes corniger soldiers but not workers. In the remaining species, there was no ULL partitioning by caste 
(soldier versus worker). Body size significantly correlated with ULL with the exception of Cornitermes walkeri, an outlier 
in both body size and ULL. A better understanding of how termites cope with temperature is important for this essential 
wood decomposer in a changing climate.
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Introduction

The ability to adapt to habitat-specific temperature ranges 
is responsible for much of the global pattern of biodiversity 
and key metabolic strategies, e.g. ectothermy and endo-
thermy. In social organisms, thermoregulation requires 
consideration of the individual as well as the nest. Social 
insect species’ persistence in an area will depend in part 
on their thermal tolerance breadth, the range of survivable 
temperatures, and thermal tolerance diversity, the variation 
between individuals in a nest (Baudier 2017). Thermal toler-
ance diversity may be especially important in determining 
where a colony can thrive (Baudier et al. 2015). Though one 
of the oldest social insect groups (Bourguignon et al. 2015) 
with known, varied, complex forms of colony thermoregu-
lation (Jones and Oldroyd 2006), information on termites 
thermal tolerance is lacking. This is of increasing relevance 
given projected global temperature increases.

Termite colonies use various means of thermoregulation 
(Jones and Oldroyd 2006). Passively, termites use nest archi-
tecture to facilitate ventilation, exemplified by the magnetic 
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Amitermes mounds in northern Australia and other mound 
building termites (Jones and Oldroyd 2006). Actively, indi-
vidual termites are able to increase temperature by cluster-
ing and producing metabolic heat, as shown in two species 
of Coptotermes in Australia where the temperature of the 
nursery chamber of the nest is elevated by congregating 
workers (Greaves 1964). Contrastingly in warmer climates, 
Macrotermes decreases nest temperature through evapora-
tive cooling by placing water on the inside of exterior walls 
of the nest (Darlington 1985).

The climate variability hypothesis (CVH) asserts that 
greater variation in environmental temperatures is matched 
by a larger range in organismal thermal tolerance (Janzen 
1967; Stevens 1989). The pattern is robust in ectotherms, 
endotherms, and plants (n = 2740) (Araújo et al. 2013), 
although a large portion of the variation in tolerance was 
found around the lower tolerance limits (Sunday et al. 2011).

Although the CVH has not been specifically tested in ter-
mites, there has been an interest in heat tolerances of a vari-
ety of termites for practical applications in pest management 
(Scheffrahn et al. 1997; Woodrow and Grace 1998a). Less 
is known about caste and environmental differences across 
termite species (Hu and Appel 2004; Mitchell et al. 1993; 
Woon et al. 2018). However, in other eusocial insects, dif-
ferences in thermal tolerances were correlated to worker size 
(Cerdá and Retana 1997; Clémencet et al. 2010), colony size 
(Oyen et al. 2016; Ribeiro et al. 2012; Wendt and Verble-
Pearson 2016), nest location (Baudier et al. 2015), and role 
(Strassmann et al. 1984) and is often explained by differ-
ences in microhabitats experienced by individuals.

The aim of this paper was to directly test the CVH using 
a panel of tropical and temperate termite species. Specifi-
cally, we: (1) contrast heat tolerance across temperate and 
tropical species; (2) examine if there is caste- or task-specific 
partitioning of heat tolerance; and (3) address how body size 
contributes to heat tolerance. We hypothesize that if termites 
adhere to predictions proposed by the CVH, temperate spe-
cies will have a higher upper thermal tolerance than tropical 
species, approximating a wider thermal breadth; that colo-
nies partition heat tolerance with tasks or castes exposed to 
more temperature variability able to withstand a wider range 
of temperatures; and that body size contributes to the varia-
tion in heat tolerance within and between species.

Materials and methods

Sample collection and identification

Termites were collected for this study from two locations 
in Texas, United States, and two locations in Costa Rica 
(Table 1, Fig. 1). In Texas, the sites were the Hill Coun-
try State Natural Area (SNA) in the Edwards Plateau in 

west Texas and a city park in Texas City, Texas which is a 
part of the Gulf Coast prairie ecotype (Table 1, Fig. 1b). 
In Costa Rica, termites were collected from two research 
stations operated by the Organization for Tropical Studies: 
La Selva Biological Station in a lowland rainforest (35 m 
elevation) and Las Cruces Biological Station in a premon-
tane wet forest (1200 m elevation) (Table 1, Fig. 1c). Nine-
teen climatic variables were extracted from WorldClim 
Global Climate Data (Fick and Hijmans 2017) for each 
sample site. Samples were collected alive with aspirators 
and soft forceps and thermal tolerance trials were run on 
24 individuals per caste (soldier and worker) for each col-
ony. Following the thermal trials, individuals were stored 
in 100% ethanol for morphological and genetic analyses. 
These specimens are maintained in the Rollins Structural 
and Urban Entomology Facility, Texas A&M University, 
United States and voucher specimens are deposited in the 
Texas A&M University Insect Collection (#734). 

When possible, collected termites were morphologi-
cally identified with dichotomous keys (Banks et al. 1918; 
Emerson 1952; Nickle and Collins 1992). These identifi-
cations were confirmed by sequencing the 16S section of 
mitochondrial DNA. Genomic DNA was extracted from 
entire bodies of individual specimens using a salting-out 
procedure with in-house reagents (Sambrook and Russell 
2001). The 16S region was amplified with the primers: 
LR-J-13007 (5′-TTA​CGC​TGT​TAT​CCC​TAA​-3′) (Kamb-
hampati and Smith 1995) and LR-N-13398 (5′-CGC​CTG​
TTT​ATC​AAA​AAC​AT-3′) (Simon et al. 1994). Consen-
sus sequences were created from alignment of both direc-
tions for each sample in Geneious 9.1.8 (Kearse et al. 
2012). Sequences were subjected to BLAST searches of 
sequences in GenBank to determine similarity and species 
identification.

Thermal tolerance analysis

The upper lethal limit (ULL) was calculated for 24 indi-
viduals per experimental group according to Esch et al. 
(2017). Termites were placed individually in 1.5 mL plas-
tic Eppendorf tubes capped with cotton in a digital heat 
block (Thermo Scientific Compact Digital Dry Bath/Block 
Heater, double block capacity, model 88871002, tempera-
ture control accuracy and uniformity at 37 °C ≤ ± 0.5 °C). 
The block temperature began at 33 °C and increased by 
1 °C every 5 min (Esch et al. 2017). After each 5 min 
exposure, the tube was examined under a dissecting micro-
scope to determine whether there was visible movement. 
When the termite no longer moved during a 5 s period, it 
was declared deceased and the previous temperature (the 
highest temperature it survived) was recorded as its ULL.
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Experimental design

We determined the variation in ULL between colonies of 
Tenuirostritermes cinereus (Buckley) by testing three dif-
ferent colonies from a single site in Texas. We examined 
the difference in heat tolerance determined by location. One 
species, Coptotermes testaceus, was collected at both sites 
in Costa Rica. The ULL was compared between sites within 
Costa Rica to determine the variation of ULL for a species 
on a relatively small scale (within a country). To test the 
climate variability hypothesis, we compiled the five species 
examined in this study along with all other records of other 
studies of the upper thermal tolerance in termites (Mitchell 
et al. 1993; Sponsler and Appel 1991; Woodrow and Grace 
1998b) (Table 2). The correlations of absolute latitude and 
nineteen bioclimatic variables to upper thermal tolerance 
were plotted and the significance was tested with Spearman’s 
correlation test in R v-3.4.1 (R Core Team 2013).

To test for a partitioning of heat tolerance by task, we 
examined Nasutitermes corniger (Motschulsky) because 
its conspicuous arboreal nests were convenient to sample. 
We collected soldiers and workers in La Selva from three 
arboreal nests and from three food sources (fallen logs) on 

the forest floor. Partitioning by caste was determined for all 
species collected and compared between soldiers and work-
ers from the same colony.

Finally, to determine the influence of body size on the 
upper thermal limit, the dry weight of 10 individuals per 
experimental group was determined following the methods 
of Haverty and Nutting (1975). Termites were placed indi-
vidually in weigh boats and maintained in an oven at 60 °C. 
The weight was recorded daily with an analytical balance 
(RADWAG AS 220.R2, readability 0.1 mg) until it was con-
stant to the nearest 0.1 mg. The correlation between body 
mass and upper lethal limit was plotted and the significance 
was tested with Spearman’s correlation test in R v-3.4.1 (R 
Core Team 2013).

Results

From the four sites in Costa Rica and Texas, a total of five 
species of termites representing two families were iden-
tified using 16S sequencing: Coptotermes formosanus 
Shiraki, C. testaceus (L.) (Rhinotermitidae), Tenuirostrit-
ermes cinereus, Nasutitermes corniger, and Cornitermes 

Table 1   Collection localities and climate data (Fick and Hijmans 2017) for samples collected from Texas, U.S.A. and Costa Rica

Location Country: State/
Province

Geographical 
coordinates

Species col-
lected

Average daily 
temperature 
fluctuation (°C)

Seasonal tem-
perature fluctua-
tion (standard 
deviation *100)

Annual tem-
perature range 
(maximum 
temperature 
of warmest 
month–mini-
mum tempera-
ture of coldest 
month) (°C)

Permit number

Hill Country 
State Natural 
Area

United States: 
Texas

29.629118, 
− 99.184520

Termitidae:
Tenuiros-

tritermes 
cinereus

12.56 691.28 31.12 Texas Parks and 
Wildlife 2018_
R2_RGV_04

Texas City United States: 
Texas

29.393290, 
− 94.945346

Rhinotermiti-
dae:

Coptotermes 
formosanus

7.78 622.91 24.52 Not required

La Selva Bio-
logical Station

Costa Rica: 
Heredia

10.429584, 
− 84.005308

Rhinotermiti-
dae:

Coptotermes 
testaceus

Termitidae:
Nasutitermes 

corniger

8.17 77.53 10.59 R-007-2018-OT-
CONAGEBIO

Las Cruces 
Biological 
Station

Costa Rica: 
Puntarenas

8.787079, 
− 82.95954

Rhinotermiti-
dae:

Coptotermes 
testaceus

Termitidae:
Cornitermes 

walkeri

9.83 82.51 11.91 R-007-2018-OT-
CONAGEBIO
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Fig. 1   a Map of collection localities. b Texas, c Costa Rica

Table 2   Species examined for climate variability hypothesis

Family Species Absolute latitude Caste(s) Upper thermal 
tolerance (°C)

Citation

Hodotermitidae Hodotermes mossambicus (Hagen) 29° Worker 47.93 Mitchell et al. (1993)
Hodotermitidae Hodotermes mossambicus 27° Worker 16.69 Mitchell et al. (1993)
Kalotermitidae Neotermes connexus Snyder 21.29925° Worker 51 Woodrow and Grace (1998b)
Kalotermitidae Incisitermes immigrans (Light) 21.29925° Worker 51.3 Woodrow and Grace (1998b)
Kalotermitidae Cryptotermes brevis (Walker) 21.29925° Worker 51.3 Woodrow and Grace (1998b)
Rhinotermitidae Reticulitermes flavipes Kollar 32.6082° Worker/Soldier 46.4/46.7 Sponsler and Appel (1991)
Rhinotermitidae Coptotermes formosanus Shiraki 32.6082° Worker/Soldier 48/46.7 Sponsler and Appel (1991)
Rhinotermitidae Coptotermes formosanus 29.39329° Worker/Soldier 45.83/45.04 This study
Rhinotermitidae Coptotermes formosanus 21.29925° Worker 47.9 Woodrow and Grace (1998b)
Rhinotermitidae Coptotermes testaceus (L.) 10.42958° Worker/Soldier 46.04/45.74 This study
Rhinotermitidae Coptotermes testaceus 8.787079° Worker/Soldier 46.37/46.22 This study
Termitidae Tenuirostritermes cinereus (Buckley) 29.629118° Worker/Soldier 43.5/43.38 This study
Termitidae Nasutitermes corniger (log) (Motschulsky) 10.429584° Worker/Soldier 44.75/43.92 This study
Termitidae Nasutitermes corniger (tree) 10.429584° Worker/Soldier 44.43/44.21 This study
Termitidae Cornitermes walkeri Snyder 8.787079° Worker/Soldier 41.08/41.67 This study
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walkeri Snyder (Termitidae) (Table 1). A preliminary test 
of ULL for three colonies of T. cinereus in Texas showed 
no significant difference between colonies. Therefore, we 
used 24 soldiers and 24 workers from a single colony to 
represent each species for the following analyses, with the 
exception of the N. corniger samples where we used three 
nests and three logs to test partitioning by task.

Difference of ULL by location

Within Costa Rica, there was no significant difference in 
the ULL of C. testaceus collected from two sites at dif-
ferent altitudes although a trend was observed in soldiers 
(P = 0.0928). Comparing temperate and tropical climates, 
most temperate samples (triangles) had a lower than 
average ULL for their body weight compared to tropical 
samples (circles) since they were mostly below the best 
fit line of the correlation between body weight and ULL 
(Fig. 2). With the addition of previous studies of upper 
thermal limits (Table 2), there is a positive correlation 
between absolute latitude and ULL (adjusted r2 = 0.06699, 
df = 22, P = 0.034) (Fig. 3). Additionally, four bioclimatic 
variables significantly predicted ULL. Specifically, ULL 
is positively correlated with temperature seasonality 
(adjusted r2 = − 0.0438, df = 22, P = 0.034), and negatively 
correlated with mean temperature of the wettest quarter 
(adjusted r2 = − 0.000352, df = 22, P =0.016), warmest 
quarter (adjusted r2 =−  0.000352, df = 22, P = 0.033), 
and precipitation of the warmest quarter (adjusted 
r2 = − 0.0003518, df = 22, P = 0.027). These results show 
that tropical termites have lower thermal limits than tem-
perate termites and this pattern is shaped by a combina-
tion of temperature and precipitation factors which shape 
microhabitat variation.

Partitioning of ULL by task or caste

In N. corniger, there was a difference in ULL for termites 
collected in the foraging site (log) vs the nest for the soldiers 
(P < 0.0001) but not the workers (P = 0.935) (Fig. 4). For 
the remaining species tested, there was no difference in ULL 
between the castes (soldier and worker) (P > 0.95).

Correlation of ULL to body weight

When examining all samples, body weight and ULL are not 
significantly correlated (P = 0.66) (Fig. 2). However, this 
is primarily due to the C. walkeri outlier with much larger 
body weight (more than 4 ×) and much lower ULL than all 
other samples. If C. walkeri is excluded from the correla-
tion, there is a significant correlation between body weight 
and ULL (adjusted r2 = 0.2292, df = 10, P = 0.017) (Fig. 2).

Fig. 2   Correlation of dry weight (mg) to upper lethal limit (°C) for 
temperate (triangle symbols) and tropical species (circle symbols) 
excluding the outlier, Cornitermes walker, marked by asterisks

Fig. 3   Correlation of absolute latitude (deg) to upper lethal limit (°C) 
for various families of termites [additional data from: (Mitchell et al. 
1993; Sponsler and Appel 1991; Woodrow and Grace 1998b)]

Fig. 4   Upper lethal limit for Nasutitermes corniger individuals that 
were foraging compared to those collected in the nest, a soldiers, b 
workers
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Discussion

This first test of the climate variability hypothesis in ter-
mites shows that they do indeed follow the pattern of tropi-
cal species having a narrower range of thermal breadth, as 
approximated through the upper thermal limit, compared 
to temperate species. This is likely caused by the greater 
daily and seasonal temperature fluctuation in the temper-
ate sampling areas (Texas, United States) compared to the 
tropical sampling locations (Costa Rica) (Table 1). The 
ULL increases as seasonality increases, indicating that 
exposure to a wider range of temperatures increases the 
ability to withstand these temperatures. These patterns 
would likely be even more pronounced if the lower ther-
mal limit were measured since Sunday et al. (2011) found 
a majority of the increase in thermal breadth came from 
the lower limit.

In N. corniger, there was a partitioning of task for sol-
diers but not for workers. Soldiers in the nest were able to 
withstand higher temperatures than soldiers in the foraging 
site (log). In the remaining species, we found no difference 
in ULL by caste. For 15 genera of termites in Borneo, 
Woon et al. (2018) also found no difference in upper ther-
mal tolerance for soldiers and workers. These observations 
do not align with Mitchell et al. (1993), however, which 
found a separation of upper and lower thermal limits by 
caste (specifically, workers and larvae) in Hodotermes 
mossambicus. This difference may be explained because 
Mitchell et al. (1993) were comparing age within a caste 
whereas we compared between castes.

With the exception of C. walkeri, body weight is a good 
predictor of ULL. However, C. walkeri is a much larger 
than the other species examined in this study and this may 
explain why this species does not align to the pattern. This 
finding contrasts results from Reticulitermes flavipes and 
C. formosanus where no correlation between worker body 
mass and thermal tolerance was detected (Hu and Appel 
2004), suggesting a complex relationship between body 
mass and thermal tolerance when considering different 
species. Hu and Appel (2004) instead attributed the vari-
ation in thermal tolerance to seasonality. Our study also 
had a lower ULL for C. formosanus (worker: 45.83 °C, 
soldier: 45.04 °C) compared to other studies by Woodrow 
and Grace (1998b) (worker: 47.9 °C) as well as Sponsler 
and Appel (1991) (worker: 48 °C, soldier: 46.7 °C). This 
difference is particularly surprising because Sponsler and 
Appel (1991) measured the critical thermal maximum, the 
temperature where the termite could still move one body 
length when probed, which should be a lower temperature 
than the lethal limit measured in this study. This under-
lines the degree of possible variation within a species at a 
broader scale than examined in this study.

A better understanding of termite thermal tolerances 
has important implications for wood decomposition in 
a warming climate. Termites are critical in recycling 
resources from wood back to the soil (Eggleton and Tayasu 
2001) and represent a biomass equal to humans (Bar-On 
et  al. 2018). Currently, climate projections highlight 
increasing mean global temperature and the frequency of 
extreme events (Pachauri et al. 2014). This change will 
likely impact tropical species more than temperate species, 
since we found that temperate termites were able to with-
stand a relatively higher temperature, indicating a wider 
range of tolerance. Future work is needed to characterize 
the lower thermal limits of termites, as well as thermal 
tolerance across a broader termite phylogeny. The latter 
can provide insight into how other evolutionary factors 
contribute to established thermal breadth and intraspe-
cific thermal diversity. Results from this study and future 
studies are important to understanding how termites will 
navigate a changing climate.
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